Osaka Journal of Mathematics

Hybrid mean value results for a generalization on a problem of D.H. Lehmer and hyper-Kloosterman sums

Huaning Liu and Wenpeng Zhang

Full-text: Open access

Abstract

The main purpose of this paper is by using the Fourier expansion for character sums and the mean value theorems of Dirichlet $L$-functions to give some hybrid mean value results for a generalization on a problem of D.H. Lehmer and hyper-Kloosterman sums.

Article information

Source
Osaka J. Math., Volume 44, Number 3 (2007), 615-637.

Dates
First available in Project Euclid: 13 September 2007

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1189717425

Mathematical Reviews number (MathSciNet)
MR2360943

Zentralblatt MATH identifier
1147.11043

Subjects
Primary: 11L05: Gauss and Kloosterman sums; generalizations

Citation

Liu, Huaning; Zhang, Wenpeng. Hybrid mean value results for a generalization on a problem of D.H. Lehmer and hyper-Kloosterman sums. Osaka J. Math. 44 (2007), no. 3, 615--637. https://projecteuclid.org/euclid.ojm/1189717425


Export citation

References

  • W. Zhang: On the difference between an integer and its inverse modulo $n$, J. Number Theory 52 (1995), 1--6.
  • W. Zhang: On the difference between an integer and its inverse modulo $n$ (II), Sci. China Ser. A 46 (2003), 229--238.
  • R.K. Guy Unsolved Problems in Number Theory, Second edition, Springer, New York, 1994.
  • W. Zhang: A problem of D.H. Lehmer and its Generalization (I), Compositio Math. 86 (1993), 307--316.
  • W. Zhang: A problem of D.H. Lehmer and its Generalization (II), Compositio Math. 91 (1994), 47--56.
  • W. Zhang: On the difference between a D.H. Lehmer number and its inverse modulo $q$, Acta Arith. 68 (1994), 255--263.
  • W. Zhang: A problem of D.H. Lehmer and its mean square value formula, Japan. J. Math. (N.S.) 29 (2003), 109--116.
  • W. Zhang, X. Zongben and Y. Yuan: A problem of D.H. Lehmer and its mean square value formula, J. Number Theory 103 (2003), 197--213.
  • W. Zhang: On a problem of D.H. Lehmer and Kloosterman sums, Monatsh. Math. 139 (2003), 247--257.
  • L.J. Mordell: On a special polynomial congruence and exponential sums; in Calcutta Math. Soc. Golden Jubilee Commemoration Vol., Part 1, Calcutta Math. Soc., Calcutta., 1963, 29\nobreakdash--32.
  • D. Bump, W. Duke, J. Hoffstein and H. Iwaniec: An estimate for the Hecke eigenvalues of Maass forms, Internat. Math. Res. Notices (1992), 75--81.
  • W. Luo, Z. Rudnick and P. Sarnak: On Selberg's eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), 387--401.
  • R.A. Smith: On $n$-dimensional Kloosterman sums, J. Number Theory 11 (1979), 324--343.
  • T.M. Apostol: Introduction to Analytic Number Theory, Springer, New York, 1976.
  • T. Funakura: On Kronecker's limit formula for Dirichlet series with periodic coefficients, Acta Arith. 55 (1990), 59--73.
  • G. Pólya: Über die Verteilung der quadratishen Reste und Nichtreste, Gottinger Nachrichten (1918), 21--29.
  • C. Pan and C. Pan: Goldbach Conjecture, Science Press, Beijing, 1992.
  • W. Zhang: On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), 89--96.
  • W. Zhang, Y. Yi and X. He: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums, J. Number Theory 84 (2000), 199--213.