Osaka Journal of Mathematics

On the crossing number of 2-bridge knot and the canonical genus of its Whitehead double

Takuji Nakamura

Full-text: Open access

Abstract

By using Morton's inequality we study the canonical genus of a Whitehead double of a knot. We show that the crossing number of a 2-bridge knot coincides with the canonical genus of its Whitehead double.

Article information

Source
Osaka J. Math., Volume 43, Number 3 (2006), 609-623.

Dates
First available in Project Euclid: 25 September 2006

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1159190004

Mathematical Reviews number (MathSciNet)
MR2283412

Zentralblatt MATH identifier
1111.57008

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Citation

Nakamura, Takuji. On the crossing number of 2-bridge knot and the canonical genus of its Whitehead double. Osaka J. Math. 43 (2006), no. 3, 609--623. https://projecteuclid.org/euclid.ojm/1159190004


Export citation

References

  • G. Burde and H. Zieschang: Knots, Walter de Gruyter & Co., Berlin, 1985.
  • H. Gruber: On a conjecture by Stoimenow and Kidwell, preprint, available arXiv: math.GT/0406106.
  • A. Kawauchi: On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math. 11 (1994), 49--68.
  • A. Kawauchi: A Survey of Knot Theory, Birkhäuser Verlag, Basel, 1996.
  • M. Kobayashi and T. Kobayashi: On canonical genus and free genus of knot, J. Knot Theory Ramifications 5 (1996), 77--85.
  • H.C. Lyon: Knots without unknotted incompressible spanning surfaces, Proc. Amer. Math. Soc. 35 (1972), 617--620.
  • C. Livingston: The free genus of doubled knots, Proc. Amer. Math. Soc. 104 (1988), 329--333.
  • Y. Moriah: On the free genus of knots, Proc. Amer. Math. Soc. 99 (1987), 373--379.
  • H.R. Morton: Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107--109.
  • K. Murasugi: Knot Theory and its Applications, Birkhäuser Boston Inc., Boston, MA, 1996.
  • T. Nakamura: On canonical genus of fibered knot, J. Knot Theory Ramifications 11 (2002), 341--352.
  • D. Rolfsen: Knots and Links, Mathematics Lecture Series 7, Publish or Perish Inc., Berkeley, Calif., 1976.
  • L. Rudolph: A congruence between link polynomials, Math. Proc. Cambridge Philos. Soc. 107 (1990), 319--327.
  • J. Tripp: The canonical genus of an infinite family of knots, J. Knot Theory Ramifications 11 (2002), 1233--1242.