Nagoya Mathematical Journal

Simple normal crossing Fano varieties and log Fano manifolds

Kento Fujita

Full-text: Open access

Abstract

A projective log variety (X,D) is called a log Fano manifold if X is smooth and if D is a reduced simple normal crossing divisor on X with (KX+D) ample. The n-dimensional log Fano manifolds (X,D) with nonzero D are classified in this article when the log Fano index r of (X,D) satisfies either rn/2 with ρ(X)2 or rn2. This result is a partial generalization of the classification of logarithmic Fano 3-folds by Maeda.

Article information

Source
Nagoya Math. J., Volume 214 (2014), 95-123.

Dates
First available in Project Euclid: 24 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1393251538

Digital Object Identifier
doi:10.1215/00277630-2430136

Mathematical Reviews number (MathSciNet)
MR3211820

Zentralblatt MATH identifier
1297.14047

Subjects
Primary: 14J45: Fano varieties
Secondary: 14E30: Minimal model program (Mori theory, extremal rays)

Citation

Fujita, Kento. Simple normal crossing Fano varieties and log Fano manifolds. Nagoya Math. J. 214 (2014), 95--123. doi:10.1215/00277630-2430136. https://projecteuclid.org/euclid.nmj/1393251538


Export citation

References

  • [A] F. Ambro, Quasi-log varieties (in Russian), Tr. Mat. Inst. Steklova 240 (2003), 220–239; English translation in Proc. Steklov Inst. Math. 240 (2003), 214–233.
  • [ABW] M. Andreatta, E. Ballico, and J. A. Wiśniewski, Two theorems on elementary contractions, Math. Ann. 297 (1993), 191–198.
  • [AW] M. Andreatta and J. A. Wiśniewski, A note on nonvanishing and applications, Duke. Math. J. 72 (1993), 739–755.
  • [CMS] K. Cho, Y. Miyaoka, and N. I. Shepherd-Barron, “Characterizations of projective spaces and applications to complex symplectic manifolds” in Higher Dimensional Birational Geometry (Kyoto, 1997), Adv. Stud. Pure Math. 35, Math. Soc. Japan, Tokyo, 2002, 1–88.
  • [F] O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint, arXiv:0907.1506v1 [math.AG]
  • [Ft1] T. Fujita, “On polarized manifolds whose adjoint bundles are not semipositive” in Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 167–178.
  • [Ft2] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, Cambridge, 1990.
  • [GM] M. Goresky and R. MacPherson, Stratified Morse Theory, Ergeb. Math. Grenzgeb. (3) 14, Springer, Berlin, 1988.
  • [I] V. A. Iskovskikh, Fano threefolds, I, Izv. Ross. Akad. Nauk Ser. Mat. 41 (1977), 516–562, 717; II, 42 (1978), 506–549.
  • [KO] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31–47.
  • [Kol1] J. Kollár, “Adjunction and discrepancies” in Flips and Abundance for Algebraic Threefolds (Salt Lake City, 1991), Astérisque 211, Soc. Math. France, Paris, 1992, 183–192.
  • [Kol2] J. Kollár, Singularities of the Minimal Model Program, Cambridge Tracts in Math. 200, Cambridge University Press, Cambridge, 2013.
  • [Kol3] J. Kollár, New examples of terminal and log canonical singularities, preprint, arXiv:1107.2864v1 [math.AG]
  • [KolM] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge, 1998.
  • [M] H. Maeda, Classification of logarithmic Fano threefolds, Compos. Math. 57 (1986), 81–125.
  • [Mat] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1986.
  • [MMu] S. Mori and S. Mukai, Classification of Fano $3$-folds with $B_{2}\geq2$, Manuscripta Math. 36 (1981/82), 147–162; Erratum, Manuscripta Math. 110 (2003), 407.
  • [Mu1] S. Mukai, “Problems on characterization of the complex projective space” in Birational Geometry of Algebraic Varieties, Open Problems (Katata, 1988), Taniguchi Foundation, Katata, 1988, 57–60.
  • [Mu2] S. Mukai, Biregular classification of Fano $3$-folds and Fano manifolds of coindex $3$, Proc. Natl. Acad. Sci. USA 86 (1989), 3000–3002.
  • [NO] C. Novelli and G. Occhetta, Rational curves and bounds on the Picard number of Fano manifolds, Geom. Dedicata 147 (2010), 207–217.
  • [W1] J. Wiśniewski, Fano $4$-folds of index $2$ with $b_{2}\geq2$: A contribution to Mukai classification, Bull. Pol. Acad. Sci. Math. 38 (1990), 173–184.
  • [W2] J. A. Wiśniewski, On a conjecture of Mukai, Manuscripta Math. 68 (1990), 135–141.
  • [W3] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math. 417 (1991), 141–157.
  • [W4] J. A. Wiśniewski, On Fano manifolds of large index, Manuscripta Math. 70 (1991), 145–152.