Nagoya Mathematical Journal

Sharp estimates of the potential kernel for the harmonic oscillator with applications

Adam Nowak and Krzysztof Stempak

Full-text: Open access

Abstract

We prove qualitatively sharp estimates of the potential kernel for the harmonic oscillator. These bounds are then used to show that the LpLq estimates of the associated potential operator obtained recently by Bongioanni and Torrea are in fact sharp.

Article information

Source
Nagoya Math. J., Volume 212 (2013), 1-17.

Dates
First available in Project Euclid: 20 June 2013

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1371731682

Digital Object Identifier
doi:10.1215/00277630-2324129

Mathematical Reviews number (MathSciNet)
MR3290678

Zentralblatt MATH identifier
1279.47074

Subjects
Primary: 47G40: Potential operators [See also 31-XX]
Secondary: 31C15: Potentials and capacities

Citation

Nowak, Adam; Stempak, Krzysztof. Sharp estimates of the potential kernel for the harmonic oscillator with applications. Nagoya Math. J. 212 (2013), 1--17. doi:10.1215/00277630-2324129. https://projecteuclid.org/euclid.nmj/1371731682


Export citation

References

  • [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988.
  • [2] B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 337–360.
  • [3] A. Nowak and K. Stempak, Riesz transforms and conjugacy for Laguerre function expansions of Hermite type, J. Funct. Anal. 244 (2007), 399–443.
  • [4] A. Nowak and K. Stempak, Negative powers of Laguerre operators, Canad. J. Math. 64 (2012), 183–216.
  • [5] K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), 443–472.
  • [6] K. Stempak and J. L. Torrea, BMO results for operators associated to Hermite expansions, Illinois J. Math. 49 (2005), 1111–1131.