Nagoya Mathematical Journal

On the Kottwitz-Shelstad normalization of transfer factors for automorphic induction for GLn

Kaoru Hiraga and Atsushi Ichino

Full-text: Open access

Abstract

Automorphic induction for GLn is a case of endoscopic transfer, and its character identity was established by Henniart and Herb, up to a constant of proportionality. We determine this constant in terms of the Kottwitz-Shelstad normalization of transfer factors, which involves certain ε-factors.

Article information

Source
Nagoya Math. J., Volume 208 (2012), 97-144.

Dates
First available in Project Euclid: 5 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1354716558

Digital Object Identifier
doi:10.1215/00277630-1815222

Mathematical Reviews number (MathSciNet)
MR3006698

Zentralblatt MATH identifier
1259.22010

Subjects
Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Hiraga, Kaoru; Ichino, Atsushi. On the Kottwitz-Shelstad normalization of transfer factors for automorphic induction for $\mathrm{GL}_{n}$. Nagoya Math. J. 208 (2012), 97--144. doi:10.1215/00277630-1815222. https://projecteuclid.org/euclid.nmj/1354716558


Export citation

References

  • [1] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Stud. 120, Princeton University Press, Princeton, NJ, 1989.
  • [2] E. Artin and J. Tate, Class Field Theory, AMS Chelsea Publishing, Providence, 2009.
  • [3] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Stud. 151, Princeton University Press, Princeton, NJ, 2001.
  • [4] G. Henniart, La conjecture de Langlands locale pour $\mathrm{GL}(3)$, Mém. Soc. Math. Fr. (N.S.) 11–12, Math. Soc. Fr., Paris, 1984.
  • [5] G. Henniart, On the local Langlands conjecture for $\mathrm{GL}(n)$: The cyclic case, Ann. of Math. (2) 123 (1986), 145–203.
  • [6] G. Henniart, Induction automorphe pour $\mathrm{GL}(n,\mathbb{C})$, J. Funct. Anal. 258 (2010), 3082–3096.
  • [7] G. Henniart and R. Herb, Automorphic induction for $\mathrm{GL}(n)$ (over local non-Archimedean fields), Duke Math. J. 78 (1995), 131–192.
  • [8] G. Henniart and B. Lemaire, Intégrales orbitales tordues sur $\mathrm{GL}(n,F)$ et corps locaux proches: Applications, Canad. J. Math. 58 (2006), 1229–1267.
  • [9] G. Henniart and B. Lemaire, Formules de caractères pour l’induction automorphe, J. Reine Angew. Math. 645 (2010), 41–84.
  • [10] G. Henniart and B. Lemaire, Changement de base et induction automorphe pour $\mathrm{GL}_{n}$ en caractéristique non nulle, Mém. Soc. Math. Fr. (N.S.) 124, Math. Soc. Fr., Paris, 2011.
  • [11] K. Hiraga and H. Saito, On $L$-packets for inner forms of $\mathrm{SL}_{n}$, Mem. Amer. Math. Soc. 215 (2012), no. 1013.
  • [12] R. E. Howe, Tamely ramified supercuspidal representations of $\mathrm{Gl}_{n}$, Pacific J. Math. 73 (1977), 437–460.
  • [13] R. E. Kottwitz and D. Shelstad, Foundations of Twisted Endoscopy, Astérisque 255, Soc. Math. France, Paris, 1999.
  • [14] J.-P. Labesse and R. P. Langlands, $L$-indistinguishability for $\mathrm{SL}(2)$, Canad. J. Math. 31 (1979), 726–785.
  • [15] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), 219–271.
  • [16] F. Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), 297–355.
  • [17] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\mathrm{GL}(n)$, Amer. J. Math. 106 (1984), 67–111.
  • [18] J. Tate, “Number theoretic background” in Automorphic forms, representations and $L$-functions (Corvallis, Orea, 1977), Pt. 2, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 3–26.
  • [19] J.-L. Waldspurger, Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental, Canad. J. Math. 43 (1991), 852–896.
  • [20] J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compos. Math. 105 (1997), 153–236.
  • [21] J.-L. Waldspurger, La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes spéciaux orthogonaux, preprint, arXiv:0911.4568 [math.RT].