Nagoya Mathematical Journal

Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters

Shiro Goto and Kazuho Ozeki

Full-text: Open access

Abstract

Let Am be a Noetherian local ring with d=dimA2. Then, if A is a Buchsbaum ring, the first Hilbert coefficients eQ1A of A for parameter ideals Q are constant and equal to -i=1d-1d-2i-1hiA, where hiA denotes the length of the ith local cohomology module HmiA of A with respect to the maximal ideal m. This paper studies the question of whether the converse of the assertion holds true, and proves that A is a Buchsbaum ring if A is unmixed and the values eQ1A are constant, which are independent of the choice of parameter ideals Q in A. Hence, a conjecture raised by [GhGHOPV] is settled affirmatively.

Article information

Source
Nagoya Math. J., Volume 199 (2010), 95-105.

Dates
First available in Project Euclid: 14 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1284471571

Digital Object Identifier
doi:10.1215/00277630-2010-004

Mathematical Reviews number (MathSciNet)
MR2730412

Zentralblatt MATH identifier
1210.13021

Subjects
Primary: 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05]
Secondary: 13A30: Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics 13B22: Integral closure of rings and ideals [See also 13A35]; integrally closed rings, related rings (Japanese, etc.) 13H15: Multiplicity theory and related topics [See also 14C17]

Citation

Goto, Shiro; Ozeki, Kazuho. Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters. Nagoya Math. J. 199 (2010), 95--105. doi:10.1215/00277630-2010-004. https://projecteuclid.org/euclid.nmj/1284471571


Export citation

References

  • [GhGHOPV] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals, J. London Math. Soc. (2) 81 (2010), 679–695.
  • [GhHV] L. Ghezzi, J.-Y. Hong, and W. V. Vasconcelos, The signature of the Chern coefficients of local rings, Math. Res. Lett. 16 (2009), 279–289.
  • [G] S. Goto, On Buchsbaum rings, J. Algebra 67 (1980), 272–279.
  • [GNi] S. Goto and K. Nishida, Hilbert coefficients and Buchsbaumness of associated graded rings, J. Pure Appl. Algebra 181 (2003), 61–74.
  • [H] C. Huneke, The theory of d-sequences and powers of ideals, Adv. in Math. 46 (1982), 249–279.
  • [MV] M. Mandal and J. K. Verma, On the Chern number of an ideal, Proc. Amer. Math. Soc. 138 (2010), 1995–1999.
  • [Sch] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr. 88 (1979), 295–306.
  • [STC] P. Schenzel, N. V. Trung, and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73.
  • [SV] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Springer, Berlin, 1986.
  • [T] N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1–49.
  • [V] W. V. Vasconcelos, The Chern coefficients of local rings, Mich. Math. J. 57 (2008), 725–743.