Open Access
2007 Annihilator, completeness and convergence of wavelet system
Kwok-Pun Ho
Nagoya Math. J. 188: 59-105 (2007).

Abstract

We show that if $\{ \varphi \}_{Q \in \mathcal{Q}} \in \bigcap \mathcal{M}_{\alpha}(\mathbb{R}^{n})$ is a frame and $\{ \psi_{Q} \}_{Q \in \mathcal{Q}} \in \bigcap \mathcal{M}_{\alpha}(\mathbb{R}^{n})$ is its dual frame (for the definition of $\mathcal{M}_{\alpha}(\mathbb{R}^{n})$, see Definition 2.1), where $\mathcal{Q}$ is the collection of dyadic cubes, then for any $f \in \mathcal{S}'(\mathbb{R}^{n})$, there exists a sequence of polynomials, $P_{L, L', L''}$, such that

\lim_{L, L', L'' \to \infty} \biggl\{ \sum_{-L' \le i \le L} \sum_{|k| \le \delta(i)2^{L''}} \langle f, \psi_{Q_{i, k}} \rangle \varphi_{Q_{i, k}}-P_{L, L', L''} \biggr\} = f

in the topology of $\mathcal{S}'(\mathbb{R}^{n})$, where $\delta(i) = \max(2^{i}, 1)$. We prove this result by explicitly constructing the polynomials $P_{L, L', L''}$. Furthermore, using the above result, we assert that the linear span of the one-dimensional wavelet system is dense in a function space if and only if the dual space of this function space has an trivial intersection with the set of polynomials. This is proved by using the annihilator of the one-dimensional wavelet system.

Citation

Download Citation

Kwok-Pun Ho. "Annihilator, completeness and convergence of wavelet system." Nagoya Math. J. 188 59 - 105, 2007.

Information

Published: 2007
First available in Project Euclid: 17 December 2007

zbMATH: 1137.42010
MathSciNet: MR2371769

Subjects:
Primary: 42B35 , 42C15 , ‎42C40
Secondary: 46E35 , 47B38

Keywords: Annihilator and Schwartz distribution , frames , Wavelets

Rights: Copyright © 2007 Editorial Board, Nagoya Mathematical Journal

Vol.188 • 2007
Back to Top