Nagoya Mathematical Journal

Verma modules and preprojective algebras

Christof Geiss, Bernard Leclerc, and Jan Schröer

Full-text: Open access

Abstract

We give a geometric construction of the Verma modules of a symmetric Kac-Moody Lie algebra $\mathfrak{g}$ in terms of constructible functions on the varieties of nilpotent finite-dimensional modules of the corresponding preprojective algebra $\Lambda$.

Article information

Source
Nagoya Math. J., Volume 182 (2006), 241-258.

Dates
First available in Project Euclid: 20 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1150810008

Mathematical Reviews number (MathSciNet)
MR2235343

Zentralblatt MATH identifier
1137.17021

Subjects
Primary: 14M99: None of the above, but in this section 16G20: Representations of quivers and partially ordered sets 17B35: Universal enveloping (super)algebras [See also 16S30] 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Citation

Geiss, Christof; Leclerc, Bernard; Schröer, Jan. Verma modules and preprojective algebras. Nagoya Math. J. 182 (2006), 241--258. https://projecteuclid.org/euclid.nmj/1150810008


Export citation

References

  • K. Bongartz, Algebras and quadratic forms , J. London Math. Soc., 28 (1983), 461--469.
  • M. C. R. Butler and A. D. King, Minimal resolutions of algebras , J. Algebra, 212 (1999), 323--362.
  • W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities , Amer. J. Math., 122 (2000), 1027--1037.
  • C. Geiss, B. Leclerc and J. Schröer, Semicanonical bases and preprojective algebras , Ann. Scient. Éc. Norm. Sup., 38 (2005), 193--253.
  • I. M. Gelfand and V. A. Ponomarev, Model algebras and representations of graphs , Funct. Anal. Appl., 13 (1980), 157--166.
  • G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras , J. Amer. Math. Soc., 4 (1991), 365--421.
  • G. Lusztig, Semicanonical bases arising from enveloping algebras , Adv. Math., 151 (2000), 129--139.
  • G. Lusztig, Remarks on quiver varieties , Duke Math. J., 105 (2000), 239--265.
  • G. Lusztig, Constructible functions on varieties attached to quivers , Studies in memory of Issai Schur, 177--223, Progress in Mathematics 210, Birkhäuser (2003).
  • H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , Duke Math. J., 76 (1994), 365--416.
  • C. M. Ringel, The preprojective algebra of a quiver , Algebras and modules II (Geiranger, 1966), 467--480, CMS Conf. Proc. 24, AMS (1998).