Nagoya Mathematical Journal

Addendum to the paper "A note on weighted Bergman spaces and the Cesàro operator"

Der-Chen Chang and Stevo Stević

Full-text: Open access

Abstract

Let $H({\bf D}_{n})$ be the space of holomorphic functions on the unit polydisk ${\bf D}_{n}$, and let ${\cal L}^{p, q}_{\alpha}({\bf D}_{n})$, where $p, q > 0$, $\alpha = (\alpha_{1}, \dots, \alpha_{n})$ with $\alpha_{j} > -1$, $j = 1, \dots, n$, be the class of all measurable functions $f$ defined on ${\bf D}_{n}$ such that

$\int_{[0, 1)^{n}} M^{q}_{p}(f, r) \prod_{j=1}^{n} (1-r_{j})^{\alpha_{j}} dr_{j} < \infty$,

where $M_{p}(f, r)$ denote the $p$-integral means of the function $f$. Denote the weighted Bergman space on ${\bf D}_{n}$ by ${\cal A}^{p, q}_{\alpha}({\bf D}_{n}) = {\cal L}^{p, q}_{\alpha}({\bf D}_{n}) \cap H({\bf D}_{n})$. We provide a characterization for a function $f$ being in ${\cal A}^{p, q}_{\alpha}({\bf D}_{n})$. Using the characterization we prove the following result: Let $p > 1$, then the Cesàro operator is bounded on the space ${\cal A}^{p, p}_{\alpha}({\bf D}_{n})$.

Article information

Source
Nagoya Math. J., Volume 180 (2005), 77-90.

Dates
First available in Project Euclid: 14 December 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1134569896

Mathematical Reviews number (MathSciNet)
MR2186669

Zentralblatt MATH identifier
1090.32500

Subjects
Primary: 47B38: Operators on function spaces (general)
Secondary: 46E15: Banach spaces of continuous, differentiable or analytic functions

Keywords
Weighted Bergman space polydisk Cesàro operator

Citation

Chang, Der-Chen; Stević, Stevo. Addendum to the paper "A note on weighted Bergman spaces and the Cesàro operator". Nagoya Math. J. 180 (2005), 77--90. https://projecteuclid.org/euclid.nmj/1134569896


Export citation

References

  • G. Benke and D. C. Chang, A note on weighted Bergman spaces and the Cesáro operator , Nagoya Math. J., 159 (2000), 25–43.
  • A. Siskakis, Weighted integrals of analytic functions , Acta Sci. Math., 66 (2000), 651–664.
  • S. Stević, Weighted integrals of holomorphic functions in $\bf C^n$ , Complex Variables, 47 (9) (2002), 821–838.
  • S. Stević, Weighted integrals of harmonic functions , Studia Sci. Math. Hung., 39 (1-2) (2002), 87–96.
  • S. Stević, Cesàro averaging operators , Math. Nachr., 248-249 (2003), 185–189.
  • S. Stević, Weighted integrals and conjugate functions in the unit disk , Acta Sci. Math., 69 (2003), 109–119.
  • S. Stević, On generalized weighted Bergman spaces , Complex Variables, 49 (2) (2004), 109–124.
  • S. Stević, Weighted integrals for polyharmonic type functions , Houston J. Math., 30 (2) (2004), 511–521.