Nagoya Mathematical Journal

Rings with ascending condition on annihilators

Carl Faith

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 27, Part 1 (1966), 179-191.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118801626

Mathematical Reviews number (MathSciNet)
MR0193107

Zentralblatt MATH identifier
0154.03001

Subjects
Primary: 16.40
Secondary: 16.25

Citation

Faith, Carl. Rings with ascending condition on annihilators. Nagoya Math. J. 27 (1966), no. 1, 179--191. https://projecteuclid.org/euclid.nmj/1118801626


Export citation

References

  • [1] Rheinhold Baer, Abelian groups which are direct summands of every containing abelian group, Bull. Amer. Math. Soc. 46 (1940), 800-806.
  • [2] Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
  • [3] Stephen U. Chase, Pn. D. Thesis, University of Chicago.
  • [4] Beno Eckmann and A. Schopf, Uber Injektive Moduln, Archiv der Math. 4 (1953), 74-78.
  • [5] Samuel Eilenberg and Tadasi Nakayama, On the dimension of modules and algebras, II (Frobenius algebras and quasi-frobenius rings) Nagoya Math. J. 9 (1966), 1-16.
  • [6] Carl Faith, Lectures on injective modules and quotient rings, (revised edition), Springer, Heidelberg, 1966.
  • [7] Carl Faith, and Elbert A. Walker, Direct sum representations of injective modules, J. Algebra (to appear).
  • [8] Alfred W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3) 8 (1958), 589-608.
  • [9] Alfred W. Goldie, Semiprime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201-220.
  • [10] Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. 40 (1939), 712-730.
  • [11] Masatosi Ikeda and Tadasi Nakayama, On some characteristic properties of quasi- frobenius and regular rings, Proc. Amer. Math. Soc. 5 (1954), 15-19.
  • [12] Richard E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
  • [13] Yuzo Utumi, On a theorem on modular lattices, Proc. Japan Academy, 35 (1959), 16-21.
  • [14] John von Neumann, On regular rings, Proc. Nat. Acad. Sci. USA 22 (1936) 707-713.
  • [15] Carol P. Walker and Elbert A. Walker, Quotient categories of modules, Trans. Amer. Math. Soc. (to appear).
  • [16] Edward T. Wong and Richard E. Johnson, Self-injective rings, Can. Math. Bull. 2
  • [17] Masatoshi Ikeda, A characterization of quasi-frobenius rings, Osaka Math, J. 4 (1952), 203-210. Institute for Defense Analyses Princeton, New Jersey Rutgers, the State University New Brunswick, New Jersey