Nagoya Mathematical Journal

Representations of algebraic groups

Robert Steinberg

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 22 (1963), 33-56.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118801156

Mathematical Reviews number (MathSciNet)
MR0155937

Zentralblatt MATH identifier
0271.20019

Subjects
Primary: 22.90
Secondary: 14.50

Citation

Steinberg, Robert. Representations of algebraic groups. Nagoya Math. J. 22 (1963), 33--56. https://projecteuclid.org/euclid.nmj/1118801156


Export citation

References

  • [1] Brauer, R. and Nesbitt, C, On the modular representations of groups of finite order, U. of Toronto Studies (1937), 1-21.
  • [2] Brauer, R. and Nesbitt, C, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
  • [3] Chevalley C, Sur certains groupes simples, Thoku Math. J. 7 (1955), 14-66.
  • [4] Curtis, C. W., Representations of Lie algebras of classical type with applications to linear groups, J. Math, and Mech. 9 (1960), 307-326.
  • [5] Curtis, C. W., On projective representations of certain finite groups, Proc. Amer. Math. Soc. 11 (1960), 852-860.
  • [6] Curtis, C. W., On the dimensions of the irreducible modules of Lie algebras of classical type, Trans. Amer. Math. Soc. 96 (1960), 135-142.
  • [7] Dickson, L. E., The abstract form (two papers), Quart. J. Math. 38 (1907), 141-158.
  • [8] Hertzig, D., Forms of algebraic groups, Proc. Amer. Math. Soc. 12 (1961), 657-660,
  • [9] Lang, S., Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.
  • [10] Mark, C, Thesis, U. of Toronto.
  • [11] Ree, R., A family of simple groups associated with the simple Lie algebra of type (Fi), second paper (G2), Amer. J. Math. 83 (1961), 401-420, 432-462.
  • [12] Rosenlicht, M., Some rationality questions on algebraic groups, Ann. di Mat. 43 (1957), 25-50.
  • [13] Seminaire C. Chevalley, Classification des Groupes de Lie Algebriques (two volumes), Paris (1956-8).
  • [14] Seminaire Sophus Lie, Paris (1954-5).
  • [15] Serre, J. P., Groupes algebtiques et corps de classes, Hermann, Paris (1959).
  • [16] Steinberg, R., A geometric approach, Trans. Amer. Math. Soc. 71 (1951), 274-282.
  • [17] Steinberg, R., Prime power representations of finite linear groups II, Can. J. Math. 9 (1957), 347-351.
  • [18] Steinberg, R., Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493-504.
  • [19] Steinberg, R., Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875-891.
  • [20] Steinberg, R., The simplicity of certain groups, Pacific J. Math. 10 (1960), 1039-1041.
  • [21] Steinberg, R., Generateurs, relations et revetements de groupes algebriques, Colloque sur la theorie des groupes algebriques, Bruxelles (1961).
  • [22] Suzuki, M., On a class of doubly transitive groups, Ann. of Math. 75 (1962), 105-145.
  • [23] Tits, J., Sur les analogues algebriques des groupes semisimple complexes, Colloque d'algebre superieure, Bruxelles (1956), 261-289.
  • [24] Tits, J., Les formes reelles des groupes de type E, Sminaire Bourbaki 162, Paris (1958).
  • [25] Tits, JM Sur la trialite et certains groupes qui s'en dduisent, Paris Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 37-84.
  • [26] Weyl, H., Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen III, Math. Zeit (1926), 377-395.
  • [27] Wong, W. J., Thesis, Harvard U. Institute for Advanced Study, Princeton University of California, Los Angeles