Nagoya Mathematical Journal
- Nagoya Math. J.
- Volume 4 (1952), 43-50.
Classification of mappings of an $(n+2)$-complex into an $(n-1)$-connected space with vanishing $(n+1)$-st homotopy group
Nobuo Shimada and Hiroshi Uehara
Full-text: Open access
Article information
Source
Nagoya Math. J., Volume 4 (1952), 43-50.
Dates
First available in Project Euclid: 14 June 2005
Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118799312
Mathematical Reviews number (MathSciNet)
MR0047321
Zentralblatt MATH identifier
0048.41501
Subjects
Primary: 56.0X
Citation
Shimada, Nobuo; Uehara, Hiroshi. Classification of mappings of an $(n+2)$-complex into an $(n-1)$-connected space with vanishing $(n+1)$-st homotopy group. Nagoya Math. J. 4 (1952), 43--50. https://projecteuclid.org/euclid.nmj/1118799312
References
- [1] L. Pontrjagin, Mappings of the 3-dimensional sphere into an -dimensional complex, C. R. Acacl Sci. URSS., 31 (1942), 35-37.
- [2] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.Mathematical Reviews (MathSciNet): MR9:154a
Zentralblatt MATH: 0030.41602
Digital Object Identifier: doi:10.2307/1969172 - [3] H. Whitney, An extension theorem for mappings into simply connected spaces, Ann. of Math., 50 (1949), 285-296.Mathematical Reviews (MathSciNet): MR11:531d
Zentralblatt MATH: 0037.10002
Digital Object Identifier: doi:10.2307/1969453 - [4] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math.Helv., 22 (1949), 48-92.Mathematical Reviews (MathSciNet): MR10:559d
Zentralblatt MATH: 0039.39503
Digital Object Identifier: doi:10.1007/BF02568048 - [5] J. H. C. Whitehead, The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon, der Math., 21 (1948), 176-186.(This is inaccessible to us here.)
- [6] J. H. C. Whitehead, On adding relations to homotopy groups, Ann of Math., 42 (1941), 409-428.Mathematical Reviews (MathSciNet): MR2:323c
Zentralblatt MATH: 0027.26404
Digital Object Identifier: doi:10.2307/1968907 - [7] S. Eilenberg and S. MacLane,Relations between homology and homotopy groups of spaces II, Ann. of Math., 51 (1950) 514-533.Mathematical Reviews (MathSciNet): MR11:735a
Zentralblatt MATH: 0036.12602
Digital Object Identifier: doi:10.2307/1969365 - [8] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.Mathematical Reviews (MathSciNet): MR12:847b
Zentralblatt MATH: 0045.44202
Digital Object Identifier: doi:10.2307/1969506 - [9] G. W. Whitehead, The (w2)-nd homotopy group of the -sphere, Ann. of Math., 52 (1950), 245-247.Mathematical Reviews (MathSciNet): MR12:273a
Zentralblatt MATH: 0037.39703
Digital Object Identifier: doi:10.2307/1969466 - [10] L. Pontrjagin, C. R. Acad. Sci. URSS, 70 (1950), 957-959.
- [11] A. L. Blakers and W. S. Massay, Homotopy groups of a triad I, Ann, of Math., 53 (1951), 161-205.Mathematical Reviews (MathSciNet): MR12:435e
Zentralblatt MATH: 0042.17301
Digital Object Identifier: doi:10.2307/1969346 - [12] S, C. Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc. of London, A, 202 (1950), 253-263.Mathematical Reviews (MathSciNet): MR12:120d
Zentralblatt MATH: 0041.10201
Digital Object Identifier: doi:10.1098/rspa.1950.0098 - [13] H. Uehara, On homotopy type problems of special kind of polyhedra, to appear shortly. Mathematical Institute, Nagoya University

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Homotopy groups of diagonal complements
Kallel, Sadok and Saihi, Ines, Algebraic & Geometric Topology, 2016 - Homotopy groups of certain highly connected manifolds via loop space homology
Basu, Samik and Basu, Somnath, Osaka Journal of Mathematics, 2019 - Higher homotopy associativity of power maps on finite H-spaces
Kawamoto, Yusuke, Kyoto Journal of Mathematics, 2016
- Homotopy groups of diagonal complements
Kallel, Sadok and Saihi, Ines, Algebraic & Geometric Topology, 2016 - Homotopy groups of certain highly connected manifolds via loop space homology
Basu, Samik and Basu, Somnath, Osaka Journal of Mathematics, 2019 - Higher homotopy associativity of power maps on finite H-spaces
Kawamoto, Yusuke, Kyoto Journal of Mathematics, 2016 - Inertia groups of high-dimensional complex projective spaces
Basu, Samik and Kasilingam, Ramesh, Algebraic & Geometric Topology, 2018 - Fundamental groups of moduli stacks of stable curves of compact type
Boggi, Marco, Geometry & Topology, 2009 - Poincaré duality complexes with highly connected universal cover
Bleile, Beatrice, Bokor, Imre, and Hillman, Jonathan A, Algebraic & Geometric Topology, 2018 - Homotopy representations of the unitary groups
Lubawski, Wojciech and Ziemiański, Krzysztof, Algebraic & Geometric Topology, 2016 - On holomorphic maps with only fold singularities
Ando, Yoshifumi, Nagoya Mathematical Journal, 2001 - Stabilization for the automorphisms of free groups with boundaries
Hatcher, Allen and Wahl, Nathalie, Geometry & Topology, 2005 - Homotopy groups of the spaces of self-maps of Lie groups
MARUYAMA, Ken-ichi and ŌSHIMA, Hideaki, Journal of the Mathematical Society of Japan, 2008