Nagoya Mathematical Journal

Classification of mappings of an $(n+2)$-complex into an $(n-1)$-connected space with vanishing $(n+1)$-st homotopy group

Nobuo Shimada and Hiroshi Uehara

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 4 (1952), 43-50.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118799312

Mathematical Reviews number (MathSciNet)
MR0047321

Zentralblatt MATH identifier
0048.41501

Subjects
Primary: 56.0X

Citation

Shimada, Nobuo; Uehara, Hiroshi. Classification of mappings of an $(n+2)$-complex into an $(n-1)$-connected space with vanishing $(n+1)$-st homotopy group. Nagoya Math. J. 4 (1952), 43--50. https://projecteuclid.org/euclid.nmj/1118799312


Export citation

References

  • [1] L. Pontrjagin, Mappings of the 3-dimensional sphere into an -dimensional complex, C. R. Acacl Sci. URSS., 31 (1942), 35-37.
  • [2] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.
  • [3] H. Whitney, An extension theorem for mappings into simply connected spaces, Ann. of Math., 50 (1949), 285-296.
  • [4] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math.Helv., 22 (1949), 48-92.
  • [5] J. H. C. Whitehead, The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon, der Math., 21 (1948), 176-186.(This is inaccessible to us here.)
  • [6] J. H. C. Whitehead, On adding relations to homotopy groups, Ann of Math., 42 (1941), 409-428.
  • [7] S. Eilenberg and S. MacLane,Relations between homology and homotopy groups of spaces II, Ann. of Math., 51 (1950) 514-533.
  • [8] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.
  • [9] G. W. Whitehead, The (w2)-nd homotopy group of the -sphere, Ann. of Math., 52 (1950), 245-247.
  • [10] L. Pontrjagin, C. R. Acad. Sci. URSS, 70 (1950), 957-959.
  • [11] A. L. Blakers and W. S. Massay, Homotopy groups of a triad I, Ann, of Math., 53 (1951), 161-205.
  • [12] S, C. Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc. of London, A, 202 (1950), 253-263.
  • [13] H. Uehara, On homotopy type problems of special kind of polyhedra, to appear shortly. Mathematical Institute, Nagoya University