Nagoya Mathematical Journal

On nilpotent groups of algebra automorphisms

G. Leger and E. Luks

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 46 (1972), 87-95.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118798594

Mathematical Reviews number (MathSciNet)
MR0308226

Zentralblatt MATH identifier
0249.17009

Subjects
Primary: 17B30: Solvable, nilpotent (super)algebras

Citation

Leger, G.; Luks, E. On nilpotent groups of algebra automorphisms. Nagoya Math. J. 46 (1972), 87--95. https://projecteuclid.org/euclid.nmj/1118798594


Export citation

References

  • [1] A. Borel, Groupes lineaires algebriques, Annals of Mathematics, Vol. 64 (1956), pp. 20-82.
  • [2] A. Borel and T.A. Springer, Rationality properties of linear algebraic groups, Proc. Symp. Pure Math.,vol. 9, Amer. Math. Soc, Providence, R.I., 1966, pp. 26-32.
  • [3] N. Bourbaki, Groupes et Algebres de Lie, Hermann, Paris, 1960.
  • [4] C. Chevalley, Theorie des Groupes de Lie, Hermann,Paris, 1968.
  • [5] J. Dixmier and W.G. Lister, Derivations of nilpotent Lie algebras, Proc. Amer. Math. Soc, vol. 8 (1957) pp. 155-158.
  • [6] J. Dyer, A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc, vol. 76 (1970) pp. 52-56.
  • [7] G. Leger and S. Togo, Characteristically nilpotent Lie algebras, Duke Math.J., vol. 26 (1959) pp. 623-628.
  • [8] M. Rosenlicht, Nilpotent linear algebraic groups, Seminari 1962/63 Anal. Alg. Geom. Topol., vol. 1, 1st. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 133-152.
  • [9] D. Winter, On groups of automorphisms of Lie algebras, J. Algebra, vol. 8 (1968), pp. 131-142. TuftsUniversity Bucknell University