Nagoya Mathematical Journal

Sequential Gaussian Markov integrals

John A. Beekman

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 42 (1971), 9-21.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118798295

Mathematical Reviews number (MathSciNet)
MR0283882

Zentralblatt MATH identifier
0205.43901

Subjects
Primary: 60.62
Secondary: 28.00

Citation

Beekman, John A. Sequential Gaussian Markov integrals. Nagoya Math. J. 42 (1971), 9--21. https://projecteuclid.org/euclid.nmj/1118798295


Export citation

References

  • [1] Beekman, John A., Solutions to Generalized Schroedinger Equations via Feynman Integrals Connected with Gaussian Markov Stochastic Processes, Thesis, Univ. of Minnesota,1963.
  • [2] Beekman, John A., Gaussian Processes andGeneralized Schroedinger Equations, J. Math. Mech. 14 (1965), 789-806.
  • [3] Beekman, John A., Gaussian Markov Processes anda Boundary Value Problem, Trans. Amer.Math. Soc.126 (1967), 29-42.
  • [4] Beekman, John A., Feynman-Cameron Integrals, J. Math, andPhys.46 (1967), 253- 266.
  • [5] Beekman,John A., Green's Functions forGeneralized Schroedinger Equations, Nagoya Math. J. 35 (1969), 133-150. Correction Nagoya Math. J. 39 (1970), 199.
  • [6] Cameron, R.H.,A Family of Integrals Serving to Connect theWiener andFeynman Integrals, J. Math, andPhys.39 (1960), 126-140.
  • [7] Cameron, R.H.,The Ilstow andFeynman Integrals, J. Analyse Math. 10 (1962-3), 287-361.
  • [8] Cameron, R.H.,Approximations to Certain Feynman Integrals, J. Analyse Math.21 (1968), 337-371.
  • [9] Cameron, R.H.and D.A. Storvick, AnOperator Valued Function Space Integral and a Related Integral Equation, J. Math. Mech. 18 (1968), 517-552.
  • [10] Copson, E.T., TheoryofFunctions of a ComplexVariable,Oxford, 1935.
  • [11] Darling, D.A. and A.J.F. Siegert, Integral Equations for the Characteristic Functions of Certain Functionals of Multi-dimensional Markoff Processes, Rand Report, P-429, Rand Corporation, Santa Monica, California, 1955.
  • [12] Feynman, R.P., Space-Time Approach to Non-relativistic Quantum Mechanics, Rev. Modern Phys.20 (1948), 367-387.
  • [13] Fosdick, L.D., Numerical Estimation of the Partition Function in Quantum Statistics, J. Mathematical Phys. 3 (1962), 1251-1264.
  • [14] Fosdick, L.D., Approximation of a Class of Wiener Integrals, Math. Comp. 19 (1965), 225-233.
  • [15] Fosdick, L.D. and H.F.Jordan, Approximation of a Conditional Wiener Integral, /. Computational Phys. 3 (1968), 1-16.
  • [16] Pea-Auerbach, L. de la and L.S. Garcia-Colin, Simple Generalization of Schrodinger's Equations, J. Mathematical Phys.9 (1968), 922-927.
  • [17] Tsuda, Takao, Ichida, Kozo, and Takeshi Kiyono, Monte Carlo Path-Integral Calcu- lations for Two-Point Boundary-Value Problems, Numer. Math. 10 (1967), 110-116.
  • [18] Whittaker, E.T. and G.N. Watson, A Course of Modern Analysis, Cambridge, 1927. Ball State University Muncie,Indiana