Nagoya Mathematical Journal

A note on simple anti-commutative algebras obtained from reductive homogeneous spaces

Arthur A. Sagle

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 31 (1968), 105-124.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118796943

Mathematical Reviews number (MathSciNet)
MR0248289

Zentralblatt MATH identifier
0155.07101

Subjects
Primary: 22.80
Secondary: 17.00

Citation

Sagle, Arthur A. A note on simple anti-commutative algebras obtained from reductive homogeneous spaces. Nagoya Math. J. 31 (1968), 105--124. https://projecteuclid.org/euclid.nmj/1118796943


Export citation

References

  • [1] E. B. D y n k i n, Semisimplesubalgebrasof semisirnple Lie algebras, p. I l l,Maximalsubgroupsof the classical groups, p. 245, Amer. Math. Soc. Translations, Ser. 2, 6 (1957).
  • [2] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
  • [3] N.Jacobson, Lie Algebras, Wiley (Interscience), New York, 1962.
  • [4] Exceptional Lie Algebras, mimeographed notes.
  • [5] P J. Laufer and M.L. Tomber, Some Lie admissible algebras, Canad. J. Math., 14 (1962), p. 287.
  • [6] W.G. Lister, A structure theory of Lie triplesystems,Trans. Amer. Math. Soc, 72 (1952), p. 217.
  • [7] K. Nomizu, Invariantaffineconnections on homogeneous spaces, Amer. J. Math. 76 (1954), p. 33.
  • [8] A. Sagle, On simpleextended Lie algebras overfieldsof characteristic zero, Pacific J. Math., 15 (1965), p. 621.
  • [9] On anti-commutative algebras andgeneral Lie triplesystems On simplealgebras obtained from homogeneous general Lie triplesystems, Pacific J. Math., 15 (1965), p. 281 p. 1397.
  • [10] On anti-commutative algebras andgeneral Lie triplesystems On simplealgebras obtained from homogeneous general Lie triplesystems, On anti-commutative algebras and analyticloops, Canadian J. Math., 17 (1965), p. 550.
  • [11] On anti-commutative algebras andgeneral Lie triplesystems On simplealgebras obtained from homogeneous general Lie triplesystems, On anti-commutative algebras and homogeneous spaces, to appear. J. Math. Mech. (1967).
  • [12] R.D. Schafer, Innerderivations of non-associative algebras, Bull. Amer. Math. Soc, 55 (1949), p. 769.
  • [13] K. Yamaguti, On the Lie triplesystemand its generalization, J. Sci. of Hiroshima Univ., 21 (1958), p. 155.
  • [14] K. Yamaguti, On the theory of Malcev algebras, Kumamoto J. Sci., 6 (1963), p. 9. UniversityofMinnesota