Nagoya Mathematical Journal

Central extensions and Schur's multiplicators of Galois groups

Katsuya Miyake

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 90 (1983), 137-144.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118787181

Mathematical Reviews number (MathSciNet)
MR0702256

Zentralblatt MATH identifier
0502.12007

Subjects
Primary: 12A65
Secondary: 12A55

Citation

Miyake, Katsuya. Central extensions and Schur's multiplicators of Galois groups. Nagoya Math. J. 90 (1983), 137--144. https://projecteuclid.org/euclid.nmj/1118787181


Export citation

References

  • [1] A.Frhlich, On fields of class two, Proc. London Math. Soc. (3), 4 (1954), 235-236.
  • [2] Y. Furuta, On nilpotent factors of congruent ideal class groups of Galois exten- sions, Nagoya Math. J.,62 (1976), 13-28.
  • [3] F.-P. Heider, Strahlknoten und Geschlechterkrper mod m, J. reine angew. Math., 320 (1980), 52-67.
  • [4] G. Hoehschild and T.Nakayama, Cohomoiogy in class field theory, Ann. of Math., 55 (1952), 348-366.
  • [5] G. Hoehschild andJ.-P. Serre, Cohomoiogy of group extensions, Trans. Amer. Math. Soc, 74 (1953), 110-134.
  • [6] K. Masuda, An application of thegeneralized norm residue symbol, Proc. Amer. Math. Soc, 10 (1959), 245-252.
  • [7] K. Miyake, Onthe structure of the idle group of an algebraic number field, Nagoya Math. J.,80 (1980), 117-127.
  • [8] J.-P. Serre, Modular forms of weight one and Galois representations, in Algebraic Number Fields, ed.by A. Frhlich, Academic Press, London NewYork San Francisco, 1977.
  • [9] S. Shirai, Onthecentral class field modmof Galois extensions of an algebraic number field, Nagoya Math. J.,71 (1978), 61-85.
  • [10] J. Tate, Global class field theory, inAlgebraic Number Theory, ed. byJ. Cassels and A. Frhlich, Academic Press, London andNew York, 1967. Department of Mathematics Faculty of General Education Nagoya University Nagoya 464, Japan