Nagoya Mathematical Journal

On the existence of condenser potentials

Christian Berg

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 70 (1978), 157-165.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118785534

Mathematical Reviews number (MathSciNet)
MR0498937

Zentralblatt MATH identifier
0351.31010

Subjects
Primary: 31C05: Harmonic, subharmonic, superharmonic functions

Citation

Berg, Christian. On the existence of condenser potentials. Nagoya Math. J. 70 (1978), 157--165. https://projecteuclid.org/euclid.nmj/1118785534


Export citation

References

  • [1] Berg, C, Forst, G. Non-symmetric translation invariant Dirichlet forms. Invent. Math. 21 (1973), 199-212.
  • [2] Berg, C, Forst, G. Potential theory on locally compact abelian groups. Ergebnisse der Mathe- matik Bd. 87. Berlin Heidelberg New York Springer 1975.
  • [3] Bliedtner, J. Dirichlet forms on regular functional spaces. Seminar on potential theory, II. Lecture Notes in Mathematics vol. 226. Berlin Heidelberg New York Springer 1971.
  • [4] Deny, J. Families fondamentales, Noyaux associes. Ann. Inst. Fourier 3 (1951), 73-101.
  • [5] Deny, J. Sur les espaces de Dirichlet. Sem. de Theorie du Potentiel, Paris, Ire an- nee, 1957.
  • [6] Deny, J. Noyaux de convolution de Hunt et noyaux associes a une famille fonda- mentale. Ann. Inst. Fourier 12 (1962), 643-667.
  • [7] Deny, J. Methodes hilbertiennes en theorie du potentiel. Potential Theory (C.I.M.E. I Ciclo, Stresa) 121-201. Rome Ed. Cremonese 1970.
  • [8] It, M. Characterizations of supports of balayaged measures. Nagoya Math. J. 28 (1966), 203-230.
  • [9] Kishi, M. Sur Fexistence des mesures des condensateurs. Nagoya Math. J. 30 (1967), 1-7.
  • [10] Landkof, N. S. Foundations of modern potential theory. Die Grundlehren Bd. 180. Berlin Heidelberg New York Springer 1972. Matematisk Institut, Kbenhavns Universitet Universtetsparken 5 2100 Copenhagen Denmark