Nagoya Mathematical Journal

On the structure of $4$-folds with a hyperplane section which is a ${\bf P}^1$ bundle over a surface that fibres over a curve

Maria Lucia Fania, Ei-ichi Sato, and Andrew John Sommese

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 108 (1987), 1-14.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780825

Mathematical Reviews number (MathSciNet)
MR0920324

Zentralblatt MATH identifier
0602.14014

Subjects
Primary: 14J35: $4$-folds

Citation

Fania, Maria Lucia; Sato, Ei-ichi; Sommese, Andrew John. On the structure of $4$-folds with a hyperplane section which is a ${\bf P}^1$ bundle over a surface that fibres over a curve. Nagoya Math. J. 108 (1987), 1--14. https://projecteuclid.org/euclid.nmj/1118780825


Export citation

References

  • [Bal] L. Badescu, On ample divisors, Nagoya Math. J., 86 (1982), 155-171.
  • [Ba2] L. Badescu, On ample divisors II, Proceedings of the Week of Algebraic Ge- ometry, Bucarest 1980, Teubner, Leipzig 1981,12-32.
  • [Ba3] L. Badescu, The protective plane blown up at one point as an ample divisor, Atti Accad. Ligure Sci. Lett., 38 (1982), 88-92.
  • [Fa+So] M.L. Fania, A. J. Sommese, Varieties whosehyperplane sections are Pc bundles, preprint.
  • [Fu] T. Fujita, Onthehyperplane section principle of Lefschetz, J. Math.Soc. Japan, 32 (1980),153-169.
  • [Hi] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 41-51.
  • [Ok+Sc+Sp] C. Okonek, M. Schneider, H. Spindler, Vector bundles on Complex Pro- jective Spaces, Progress in Math. (1980) Birkhauser, Boston-Basel- Stuttgart.
  • [Sa] E. Sato, Varieties which have two projective spaces bundle structures, J. Math. Kyoto Univ., 25-3 (1985), 445-457.
  • [Sol] A. J. Sommese, On manifolds that cannot be ample divisors,Math.Ann., 221 (1976), 55-72.
  • [So2] A. J. Sommese, On the minimality of hyperplane sections of projective 3-folds, J. reine angew. Math., 3.29 (1981),16-41. M. L. Fania Istituto di Matematica Universit del Aquila Via Roma S3 67100 VAquila, Italia Department of Mathematics College of General Education Kyushu University Kyushu, 810 Japan A. J. Sommese Department of Mathematics University of Notre Dame Notre Dame, Indiana J/.6556 U. S. A.