Nagoya Mathematical Journal

On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type

R. A. Mollin

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 105 (1987), 39-47.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780637

Mathematical Reviews number (MathSciNet)
MR0881007

Zentralblatt MATH identifier
0591.12005

Subjects
Primary: 11R29: Class numbers, class groups, discriminants
Secondary: 11D09: Quadratic and bilinear equations 11R11: Quadratic extensions

Citation

Mollin, R. A. On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type. Nagoya Math. J. 105 (1987), 39--47. https://projecteuclid.org/euclid.nmj/1118780637


Export citation

References

  • [1] N. C. Ankeny, S. Chowla and H. Hasse, On the class number of the real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.
  • [2] T. Azuhata, On the fundamental units and the class numbers of real quadratic fields, Nagoya Math. J., 95 (1984), 125-135.
  • [3] G. Degert, Uber die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.
  • [4] H. Hasse, Uber mehrklassige aber eingeschlechtige reell-quadratische Zahlkorper, Elem. Math., 20 (1965), 49-59.
  • [5] S. D. Lang, Note on the class-number of the maximal real subfield of a cyclotomic field, J. reine angew Math., 290 (1977), 70-72.
  • [6] R. A. Mollin, Lower Bounds for class Numbers of Real Quadratic Fields, Proc. Amer. Math. Soc, 96 (1986), 545-550.
  • [7] R. A. Mollin, Diophantine equations and class numbers, J. Number Theory, 24 (1986), 7-19.
  • [8] C. Richaud, Sur la resolution des equations x2 –Ay2 – 1, Atti Accad. pontif. Nuovi Lincei (1866), 177-182.
  • [9] H. Takeuchi, On the class-number of the maximal real subfield of a cyclotomic field, Canad. J. Math., 33(1) (1981), 55-58.
  • [10] H. Wada, A Table of Ideal Class Numbers of Real Quadratic Fields, Kkyuroku in Math., 10 (1981), Sophia University, Tokyo.
  • [11] H. Yokoi, On the diophantine equation x2 –py2 – 4q and the class number of real subfields of a cyclotomic field, Nagoya Math. J., 91 (1983), 151-161.
  • [12] H. Yokoi, On real quadratic fields containing units with norm –1, Nagoya Math. J., 33 (1968), 139-152.
  • [13] H. Yokoi, On the fundamental unit of real quadratic fields with norm 1, J. Number Theory, 2 (1970), 106-115. Mathematics Department University of Calgary Calgary, Alberta T2N INU Canada