Nagoya Mathematical Journal

Generalized hypergroups and orthogonal polynomials

Nobuaki Obata and Norman J. Wildberger

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 142 (1996), 67-93.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118772044

Mathematical Reviews number (MathSciNet)
MR1399468

Zentralblatt MATH identifier
0862.43006

Subjects
Primary: 43A62: Hypergroups
Secondary: 42C05: Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45]

Citation

Obata, Nobuaki; Wildberger, Norman J. Generalized hypergroups and orthogonal polynomials. Nagoya Math. J. 142 (1996), 67--93. https://projecteuclid.org/euclid.nmj/1118772044


Export citation

References

  • [1] Z. Arad and H. I. Blau, On table algebras and applications to finite group theory, J. Algebra, 138 (1991), 137-185.
  • [2] Z. Arad, E. Fisman and H. I. Blau, Table algebras and applications to products of characters in finite groups, J. Algebra, 138 (1991), 186-194.
  • [3] E. Bannai and T. Ito, Algebraic Combinatorics I–Association Schemes, Benjamin and Cummings, Menlo Park, 1984.
  • [4] Yu. M. Berezansky and A. A. Kaluzhny, Hypercomplex systems with locally com- pact bases, Sel. Math. Sov., 4 (1985), 151-200.
  • [5] W. R. Bloom and S. Selvanathan, Hypergroup structures on the set of natural num- bers, Bull. Austral. Math. Soc, 33 (1986), 89-102.
  • [6] W. C. Connett and A. L. Schwartz, Analysis of a class of probability preserving measure algebras on compact intervals, Trans, Amer. Math. Soc, 320 (1990), 371-393.
  • [7] C. W. Curtis, Representation theory of finite groups From Frobenius to Brauer, Math. Intelligencer, 14 (1992), 48-57.
  • [8] C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc, 179 (1973), 331-348.
  • [9] G. Frobenius, Uber Gruppencharaktere, in Gesammelte Abhandlungen, III pp. 1-37, Springer-Verlag, 1968.
  • [10] G. Gasper, Linearization of the product of Jacobi polynomials I, Can. J. Math., 22 (1970), 171-175 II, Can.J. Math., 22 (1970), 582-593.
  • [11] H. Heyer, Probability theory on hypergroups A survey, in Probability Measures on Groups VII (H. Heyer ed.), pp. 481-550, Lect. Notes in Math. Vol. 1064, Springer-Verlag, 1984.
  • [12] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math., 18 (1975), 1-101.
  • [13] Y. Kawada, Uber den Dualitatssatz der Charactere nichtcommutativer Gruppen, Proc. Phys. Math. Soc. Japan, 24 (1942), 97-109.
  • [14] R. Lasser, Fourier-Stieltjes transforms on hypergroups, Analysis, 2 (1982), 281-303.
  • [15] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. Ser., VII 3 (1983), 185-209.
  • [16] B. M. Levitan, Generalized Translation Operators and Some of Their Applica- tions, Israel Program for Scientific Translations, Jerusalem, 1962.
  • [17] G. L. Litvinov, Hypergroups and hypergroup algebras, J. Soviet Math., 38 (1987), 1734-1761.
  • [18] J. R. McMullen, An algebraic theory of hypergroups, Bull. Austral. Math. Soc, 20 (1979), 35-55.
  • [19] J. R. McMullen and J. F. Price, Duality for finite abelian hypergroups over splitting fields, Bull. Austral. Math. Soc, 20 (1979), 57-70.
  • [20] N. Obata, Isometric operators on L -algebras of hypergroups, in Probability Mea- sures on Groups X (H. Heyer ed.), pp. 315-328, Plenum, New York, 1991.
  • [21] G. K. Pedersen, C -Algebras and Their Automorphism Groups, Academic Press, London, 1979.
  • [22] K. A. Ross, Hypergroups and centers of measure algebras, Symposia Math., 22 (1977), 189-203.
  • [23] A. L. Schwartz, / -Convolution algebras Representation and factorization, Z. W., 41 (1977), 161-176.
  • [24] W. T. Sharp, Racah algebra and the contraction of groups, Mathematical Depart- ment, University of Toronto, Toronto, 1984.
  • [25] R. Spector, Mesures invariantes sur les hypergroupes, Trans. Amer. Math. Soc, 239(1978), 147-165.
  • [26] V. S. Sunder, II factors, their bimodules and hypergroups, Trans. Amer. Math. Soc, 330(1992), 227-256.
  • [27] G. Szeg, Orthogonal Polynomials (3rd ed.), Amer. Math. Soc Colloq. Publ., Vol. 23, Providence, 1967.
  • [28] R. Szwarc, Convolution structures and Haar matrices, J. Funct. Anal., 113 (1993), 19-35.
  • [29] E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys., B 300 (1988), 360-376.
  • [30] M. Voit, Positive characters on commutative hypergroups and some applications, Math. Z., 198 (1988), 405-421.
  • [31] M. Voit, Central limit theorems for a class of polynomial hypergroups, Adv. Appl. Prob., 22(1990), 68-87.
  • [32] M. Voit, A positivity result and normalization of positive convolution structures, Math. Ann., 297 (1993), 677-692.
  • [33] N. J. Wildberger, Duality and entropy for finite commutative hypergroups and fu- sion rule algebras, to appear in Proc London Math. Soc
  • [34] N. J. Wildberger, Hypergroups and harmonic analysis, Centre Math. Anal. (ANU), 29(1992), 238-253.
  • [35] N. J. Wildberger, Finite commutative hypergroups and applications from group theory to conformal field theory, Contemp. Math., 183 (1995), 413-434. Nobuaki ObataNorman J. Wildberger Graduate School of PolymathematicsSchool of Mathematics Nagoya UniversityThe University of New South Wales Nagoya, 464-01 JapanSydney, NSW 2052 Australia