Nagoya Mathematical Journal

Hilbert-Kunz multiplicity of three-dimensional local rings

Kei-Ichi Watanabe and Ken-Ichi Yoshida

Full-text: Open access

Abstract

In this paper, we investigate the lower bound $s_{HK}(p, d)$ of Hilbert-Kunz multiplicities for non-regular unmixed local rings of Krull dimension $d$ containing a field of characteristic $p>0$. Especially, we focus on three-dimensional local rings. In fact, as a main result, we will prove that $s_{HK}(p, 3) = 4/3$ and that a three-dimensional complete local ring of Hilbert-Kunz multiplicity $4/3$ is isomorphic to the non-degenerate quadric hypersurface $k[[X, Y, Z, W]]/(X^{2}+Y^{2}+Z^{2}+W^{2})$ under mild conditions.

Furthermore, we pose a generalization of the main theorem to the case of $\dim A \ge 4$ as a conjecture, and show that it is also true in case $\dim A = 4$ using the similar method as in the proof of the main theorem.

Article information

Source
Nagoya Math. J., Volume 177 (2005), 47-75.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114632158

Mathematical Reviews number (MathSciNet)
MR2124547

Zentralblatt MATH identifier
1076.13009

Subjects
Primary: 13D40: Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series 13A35: Characteristic p methods (Frobenius endomorphism) and reduction to characteristic p; tight closure [See also 13B22]
Secondary: 13H05: Regular local rings 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05] 13H15: Multiplicity theory and related topics [See also 14C17]

Citation

Watanabe, Kei-Ichi; Yoshida, Ken-Ichi. Hilbert-Kunz multiplicity of three-dimensional local rings. Nagoya Math. J. 177 (2005), 47--75. https://projecteuclid.org/euclid.nmj/1114632158


Export citation

References

  • R. O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces , J. Algebra, 197 (1997), 246–267.
  • R. O. Buchweitz, Q. Chen and K. Pardue, Hilbert-Kunz functions , preprint.
  • M. Blickle and F. Enescu, On rings with small Hilbert-Kunz multiplicity , Proc. Amer. Math. Soc., 132 (2004), 2505–2509.
  • A. Conca, Hilbert-Kunz functions of monomials and binomial hypersurfaces , Manuscripta Math., 90 (1996), 287–300.
  • K. Eto and K. Yoshida, Notes on Hilbert-Kunz multiplicity of Rees algebras , Comm. Algebra, 31 (2003), 5943–5976.
  • R. Fedder and K.-i. Watanabe, A characterization of $F$-regularity in terms of $F$-purity , Commutative algebra (Berkeley, CA, 1987), Math. Sci. Research Inst. Publ., vol. 15, Springer-Verlag, New York (1989), 227–245.
  • N. Fakhruddin and V. Trivedi, Hilbert-Kunz functions and multiplicities for full flag varieties and elliptic curves , J. Pure Appl. Algebra, 181 (2003), 23–52.
  • S. Goto and Y. Nakamura, Multiplicity and tight closures of parameters , J. Algebra, 244 (2001), 302–311.
  • D. Hanes, Notes on the Hilbert-Kunz function , Comm. Algebra, 30 (2002), 3789–3812.
  • C. Han and P. Monsky, Some surprising Hilbert-Kunz functions , Math. Z., 214 (1993), 119–135.
  • M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem , J. Amer. Math. Soc., 3 (1990), 31–116.
  • M. Hochster and C. Huneke, $F$-regularity, test elements, and smooth base change , Trans. Amer. Math. Soc., 346 (1994), 1–62.
  • C. Huneke, Tight closure and its applications, American Mathematical Society (1996).
  • C. Huneke and Y. Yao, Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular , Proc. Amer. Math. Soc., 130 (2002), 661–665.
  • E. Kunz, Characterizations of regular local rings of characteristic $p$ , Amer. J. Math., 41 (1969), 772–784.
  • E. Kunz, On Noetherian rings of characteristic $p$ , Amer. J. Math., 88 (1976), 999–1013.
  • H. Matsumura, Commutative ring theory, Cambridge University Press (1986).
  • P. Monsky, The Hilbert-Kunz function , Math. Ann., 263 (1983), 43–49.
  • P. Monsky, A personal letter from Monsky to K.-i. Watanabe .
  • M. Nagata, Local rings, Interscience (1962).
  • D. Rees, A note on analytically unramified local rings , J. London Math. Soc., 36 (1961), 24–28.
  • K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength , J. Algebra., 230 (2000), 295–317.
  • K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity of two-dimensional local rings , Nagoya Math. J., 162 (2001), 87–110.
  • K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity, McKay correspondence and good ideals in two-dimensional rational singularities , Manuscripta Math., 104 (2001), 275–294.