Nagoya Mathematical Journal

Hardy spaces estimates for multilinear operators with homogeneous kernels

Yong Ding and Shanzhen Lu

Full-text: Open access

Abstract

In this paper the authors prove that a class of multilinear operators formed by the singular integral or fractional integral operators with homogeneous kernels are bounded operators from the product spaces $L^{p_1} \times L^{p_2} \times \cdots \times L^{p_K}({\mathbb R}^n)$ to the Hardy spaces $H^q({\mathbb R}^n)$ and the weak Hardy space $H^{q,\infty}({\mathbb R}^n)$, where the kernel functions $\Omega_{ij}$ satisfy only the $L^s$-Dini conditions. As an application of this result, we obtain the $(L^p, L^q)$ boundedness for a class of commutator of the fractional integral with homogeneous kernels and BMO function.

Article information

Source
Nagoya Math. J., Volume 170 (2003), 117-133.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631878

Mathematical Reviews number (MathSciNet)
MR1994889

Zentralblatt MATH identifier
1036.42015

Subjects
Primary: 42B35: Function spaces arising in harmonic analysis
Secondary: 47G10: Integral operators [See also 45P05]

Citation

Ding, Yong; Lu, Shanzhen. Hardy spaces estimates for multilinear operators with homogeneous kernels. Nagoya Math. J. 170 (2003), 117--133. https://projecteuclid.org/euclid.nmj/1114631878


Export citation

References

  • A. Calderón and A. Zygmund, A note on the interpolation of Sublinear operators , Amer. J. Math., 78 (1956), 282–288.
  • S. Chanillo, A note on commutators , Indiana. Univ. Math. J., 31 (1982), 7–16.
  • S. Chanillo, D. Watson and R. L. Wheeden, Some integral and maximal operators related to star-like , Studia Math., 107 (1993), 223–255.
  • L. K. Chen, On a singular integral , Studia Math., 85 (1987), 61–72.
  • R. Coifman and L. Grafakos, Hardy spaces estimates for multilinear operators I , Rev. Math. Iber., 8 (1992), 45–68.
  • Y. Ding, Weak type bounds for a class of rough operators with power weights , Proc. Amer. Math. Soc., 125 (1997), 2939–2942.
  • Y. Ding and S. Z. Lu, The $L^p_1 \times L^p_2 \times \cdots \times L^p_k$ boundedness for some rough operators , Jour. Math. Anal. Appl., 203 (1996), 166–186.
  • Y. Ding and S. Z. Lu, Weighted norm inequalities for fractional integral operators with rough kernel , Canad. J. Math., 50 (1998), 29–39.
  • Y. Ding and S. Z. Lu, Homogeneous fractional integrals on Hardy spaces , Tôhôku Math. J., 52 (2000), 153–162.
  • Y. Ding and S. Z. Lu, Hardy spaces estimates for a class of multilinear homogeneous operators , Science in China (A), 42 (1999), 1270–1278.
  • R. Fefferman and F. Soria, The Weak space $H^1$ , Studia Math., 85 (1987), 1–16.
  • L. Grafakos, Hardy spaces estimates for multilinear operators II , Rev. Math. Iber., 8 (1992), 69–92.
  • D. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers , Trans. Amer. Math. Soc., 255 (1979), 343–362.
  • S. Z. Lu, Four lectures on real $H^p$ spaces, World Scientific Publishing Co. Pte. Ltd. (1995).
  • A. Miyachi, Hardy spaces estimates for the product of singular integrals , Canad. J. Math., 52 (2000), 281–311.
  • B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for singular and fractional integrals , Trans. Amer. Math. Soc., 161 (1971), 249–258.
  • E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ocillatory Integrals, Princeton Univ. Press, Princeton, N.J. (1993).
  • A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press (1986).