Nagoya Mathematical Journal

Lifting of supersingular points on {$X\sb 0(p\sp r)$} and lower bound of ramification index

Fumiyuki Momose and Mahoro Shimura

Full-text: Open access


Let $K$ be a finite extension of $\mathbf{Q}_{p}^{\mathit{ur}}$ (= the maximal unramified extension of $\mathbf{Q}_{p}$) of degree $e_{K}$, $\mathcal{O}$ its integer ring, $p$ a rational prime and $r$ a positive integer. If there exists a one parameter formal group defined over $\mathcal{O}$ whose reduction is of height $2$ with a cyclic subgroup $V$ of order $p^{r}$ defined over $\mathcal{O}$, then $e_{K} \geq 2p^{l}$ (resp.~$p^{l}+p^{l-1}$) if $r = 2l+1$ (resp.~$r = 2l$).

We apply this result to a criterion for non-existence of $\mathbf{Q}$-rational point of $X_{0}^{+}(p^{r})$. (This criterion is Momose's theorem in [14] except for the cases $p = 5$ and $p = 13$, but our new proof does not require defining equations of modular curves except for the case $p = 2$.)

Article information

Nagoya Math. J., Volume 165 (2002), 159-178.

First available in Project Euclid: 27 April 2005

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 11G07: Elliptic curves over local fields [See also 14G20, 14H52]


Momose, Fumiyuki; Shimura, Mahoro. Lifting of supersingular points on {$X\sb 0(p\sp r)$} and lower bound of ramification index. Nagoya Math. J. 165 (2002), 159--178.

Export citation


  • V. G. Bercovic, The rational points on the jacobians of modular curves , Math. USSR-sb., 30 (1976), 485–500.
  • A. Brumer and K. Kramer, The rank of elliptic curves , Duke Math. J., 44 (1977, no. 4), 715–743.
  • A. Brumer, The rank of $J_0(N)$ , Columbia University Number Theory Seminar (New York, 1992). Astérisque no. 228 (1995, no. 3), 41–68.
  • J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge (1992).
  • P. Deigne and M. Rapoport, Les schémas de modules des courbes elliptiques , vol. II of the Proceedings of the International Summer School on Modular Functions, Antwerp, 1972, Lecture Notes in Math. vol. 349, Springer (1973).
  • R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, Teubner, LeipzigBerlin (1922).
  • Y. Hasegawa and F. Momose, Rational points on $X_0^+(13^r)$ , preprint.
  • T. Hibino and N. Murabayashi, Modular equations of hyperelliptic $X_0(N)$ and an application , Acta Arith., 82 (1997, no. 3), 279–291.
  • N. Katz and R. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press (1985).
  • B. Mazur, Modular curves and the Eisenstein ideal , Publ. Math. I.H.E.S., 47 (1977), 33–186.
  • ––––, Rational points on modular curves , Proceedings of conference on Modular functions held in Bonn, Lecture Notes in Math. vol. 601.
  • B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves , Invent. Math., 25 (1974), 1–61.
  • F. Momose, Rational points on the modular curves $X_\mathitsplit(p)$ , Compositio. Math., 52 (1984), 115–137.
  • ––––, Rational points on the modular curves $X_0^+(p^r)$ , J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 33 (1986), 441–466.
  • ––––, Rational points on $X_0(37N)/\langle w_37N \rangle$ , preprint.
  • D. Poulakis, La courbe modulaire $X_0(125)$ et sa jacobienne , J. of Number Theory, 25 (1987), 112–131.
  • J. Silverman, The Arithmetic of Elliptic Curves, SLN 106, Springer (1986).
  • G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11, Iwanami Shoten, Tokyo-Princeton Univ. Press, Princeton N. J. (1971).
  • J. Tate, $p$-divisible groupes , Proceedings of a Conference on Local Fields, Driebergen, 1966, Springer, 1967, 158–183.
  • B. J. Birch and W. Kuyk, eds., Modular functions of one variable IV, Lecture Note in Math. vol. 476, Springer (1975).