Nagoya Mathematical Journal

A unitary representation of the basical central extension of a loop group

Rémi Léandre

Full-text: Open access

Abstract

We construct a measure over the string bundle associated to the loop space of a Riemannian manifold. We deduce a representation of a finite energy Kac-Moody group analoguous to the energy representation.

Article information

Source
Nagoya Math. J., Volume 159 (2000), 113-124.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631454

Mathematical Reviews number (MathSciNet)
MR1783566

Zentralblatt MATH identifier
0969.58011

Subjects
Primary: 58J65: Diffusion processes and stochastic analysis on manifolds [See also 35R60, 60H10, 60J60]
Secondary: 22E67: Loop groups and related constructions, group-theoretic treatment [See also 58D05] 58D20: Measures (Gaussian, cylindrical, etc.) on manifolds of maps [See also 28Cxx, 46T12] 60J65: Brownian motion [See also 58J65]

Citation

Léandre, Rémi. A unitary representation of the basical central extension of a loop group. Nagoya Math. J. 159 (2000), 113--124. https://projecteuclid.org/euclid.nmj/1114631454


Export citation

References

  • S. Albeverio and R. Hoegh-Krohn, The energy representation of Sobolev Lie groups , Compositio Math., 36 , 37–52 (1978).
  • S. Albeverio, R. Hoegh-Krohn, D. Testard, A. Vershik, Factorial representation of path groups , J. Funct. Analysis, 51 (1983), 115–131.
  • J. M. Bismut, Large deviations and the Malliavin Calculus, Progress in Maths., 45 , Birkhäuser (1984).
  • J. M. Bismut, Index theorem and equivariant cohomology on the loop space , Com. Maths. Physics., 98 (1985), 213–237.
  • A. L. Carey and M. K. Murray, String structure and the path fibration of a group , Com. Math. Physics, 141 (1991), 441–452.
  • S. S. Chern and J. Simons, Characteristic forms and geometric invariants , Ann. maths., 99 (1974), 48–69.
  • R. Coquereaux and K. Pilch, String structures on loop bundles , Com. Maths. Physics., 120 (1989), 353–378.
  • B. Driver, A Cameron-Martin type quasi-invariance formula for Brownian motion on compact manifolds , J. Funct. Analysis, 110 (1992), 272–376.
  • R. Hoegh-Krohn, Relativistic quantum statistical mechanics in $2$ dimensional space time , Com. Math. Physics, 38 (1974), 195–224.
  • J. D. S. Jones and R. Léandre, $L^p$ Chen forms on loop spaces , In “Stochastic Analysis" (M. Barlow and N. Bingham, eds.), Cambridge University Press (1991), 104–162.
  • V. Kac, Infinite dimensional Lie algebras, Cambridge University Press (1985).
  • T. Killingback, World-sheet anomalies and loop geometry , Nucl. Phys. B., 288 (1987), 578–588.
  • R. Léandre, Integration by parts and rotationnaly invariant Sobolev Calculus on free loop spaces , XXVII Winter School of theoretical physics (R. Gielerak and A. Borowiec, eds.), J. Geometry and Physics, 11 (1993), 517–528.
  • ––––, Invariant Sobolev Calculus on free loop space , Acta Applicandae Mathematicae, 46 (1997), 267–350.
  • ––––, Brownian cohomology of an homogeneous manifold , In “New trends in stochastic analysis" (K. D. Elworthy,S. Kusuoka and I. Shigekawa, eds.), World Scientific (1997), 305–347.
  • ––––, Hilbert space of spinor fields over the free loop space , Reviews in Maths. Physics, 9.2 (1997), 243–277.
  • ––––, Stochastic gauge transform of the string bundle , J. Geometry and Physics, 26 (1998), 1-25.
  • ––––, String structure over the Brownian bridge , J. Math. Physics, 40.1 (1999), 454–479.
  • ––––, Stochastic cohomology of the frame bundle of the loop space , J. Nonlinear Math. Physics, 5.1 (1998), 23–40.
  • ––––, Singular integral homology of the stochastic loop space , Infi. Dim. Analysis, Quantum Proba. rel. Topics, 1.1 (1998), 17–31.
  • ––––, Stochastic cohomology of Chen-Souriau and line bundle over the Brownian bridge , to be published in P.T.R.F.
  • ––––, Cover of the Brownian bridge and stochastic symplectic action , Rev. Math. Phys., 12 , no. 1 (2000), 91–137.
  • P. Malliavin, Stochastic Analysis, Grund. Math. Wissen, 313 , Springer (1997).
  • M. P. Malliavin and P. Malliavin, Integration on loop groups III. Asymptotics Peter-Weyl orthogonality , J. Funct. Analysis, 108 (1992), 13–46.
  • J. Mickelsson, Current algebras and groups, Plenum Press (1989).
  • J. T. Ottesen, Infinite dimensional groups and algebras in Quantum physics, Lect. Notes. Physics (1995).
  • A. Pressley and G. Segal, Loop groups, Oxford University Press (1986).
  • G. Segal, Elliptic cohomology , Séminaire Bourbaki 695, Astérisque 161–162 (1988), 187–201.
  • E. Witten, The index of the Dirac operator in loop space , In “elliptic curves and modular forms in algebraic topology" (P. S. Landweber, ed.), Lec. Notes. Maths., 1326 (1988), 161–181.