Notre Dame Journal of Formal Logic
- Notre Dame J. Formal Logic
- Volume 60, Number 3 (2019), 523-550.
On Goodman Realizability
Abstract
Goodman’s theorem states that is conservative over . The same result applies to the extensional case, that is, is also conservative over . This is due to Beeson. In this article, we modify Goodman realizability and provide a new proof of the extensional case.
Article information
Source
Notre Dame J. Formal Logic, Volume 60, Number 3 (2019), 523-550.
Dates
Received: 8 November 2017
Accepted: 8 March 2018
First available in Project Euclid: 12 July 2019
Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1562918420
Digital Object Identifier
doi:10.1215/00294527-2019-0018
Mathematical Reviews number (MathSciNet)
MR3985625
Zentralblatt MATH identifier
07120754
Subjects
Primary: 03F03: Proof theory, general
Secondary: 03F10: Functionals in proof theory 03F30: First-order arithmetic and fragments 03F35: Second- and higher-order arithmetic and fragments [See also 03B30] 03F50: Metamathematics of constructive systems
Keywords
Goodman realizability axiom of choice extensionality
Citation
Frittaion, Emanuele. On Goodman Realizability. Notre Dame J. Formal Logic 60 (2019), no. 3, 523--550. doi:10.1215/00294527-2019-0018. https://projecteuclid.org/euclid.ndjfl/1562918420