Notre Dame Journal of Formal Logic

Bounds on the Strength of Ordinal Definable Determinacy in Small Admissible Sets

Diego Rojas-Rebolledo

Abstract

We give upper and lower bounds for the strength of ordinal definable determinacy in a small admissible set. The upper bound is roughly a premouse with a measurable cardinal κ of Mitchell order κ++ and ω successors. The lower bound are models of ZFC with sequences of measurable cardinals, extending the work of Lewis, below a regular limit of measurable cardinals.

Article information

Source
Notre Dame J. Formal Logic, Volume 53, Number 3 (2012), 351-371.

Dates
First available in Project Euclid: 24 September 2012

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1348524116

Digital Object Identifier
doi:10.1215/00294527-1716766

Mathematical Reviews number (MathSciNet)
MR2981013

Zentralblatt MATH identifier
1269.03052

Subjects
Primary: 03E45: Inner models, including constructibility, ordinal definability, and core models
Secondary: 03E55: Large cardinals 03E60: Determinacy principles

Keywords
determinacy admissible sets large cardinals

Citation

Rojas-Rebolledo, Diego. Bounds on the Strength of Ordinal Definable Determinacy in Small Admissible Sets. Notre Dame J. Formal Logic 53 (2012), no. 3, 351--371. doi:10.1215/00294527-1716766. https://projecteuclid.org/euclid.ndjfl/1348524116


Export citation

References

  • [1] Barwise, K. J., R. O. Gandy, and Y. N. Moschovakis, “The next admissible set,” Journal of Symbolic Logic, vol. 36 (1971), pp. 108–120.
  • [2] Barwise, K. J. Admissible Sets and Structures, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1975.
  • [3] Devlin, K. J., Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984.
  • [4] Harrington, L., “Analytic determinacy and $0^{\#}$,” Journal of Symbolic Logic, vol. 43 (1978), pp. 685–693.
  • [5] Kechris, A. S., and R. M. Solovay, “On the relative consistency strength of determinacy hypothesis,” Transactions of the American Mathematical Society, vol. 290 (1985), pp. 179–211.
  • [6] Keisler, H. J., and Knight, F., “Barwise: Infinitary logic and admissible sets,” Bulletin of Symbolic Logic, vol. 10 (2004), pp. 4–36.
  • [7] Lewis, A., “Large Dilatators and Large Cardinals; and Determinacy in Small Admissible Sets,” Ph.D. dissertation, University of California, Berkeley, 1993.
  • [8] Martin, D. A., “Measurable cardinals and analytic games,” Fundamenta Mathematicae, vol. 66 (1970), pp. 287–291.
  • [9] Martin, D. A., and J. R. Steel, “A proof of projective determinacy,” Journal of the American Mathematical Society, vol. 2 (1989), pp. 71–125.
  • [10] Mitchell, W. J., “Sets constructible from sequences of ultrafilters,” Journal of Symbolic Logic, vol. 39 (1974), pp. 57–66.
  • [11] Neeman, I., “Unraveling $\Pi_{1}^{1}$ sets,” Annals of Pure and Applied Logic, vol. 106 (2000), pp. 151–205.
  • [12] Sacks, G. E., “Countable admissible ordinals and hyperdegrees,” Advances in Mathematics, vol. 20 (1976), pp. 213–262.
  • [13] Soare, R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987.
  • [14] Steel, J. R., “Determinacy in the Mitchell models,” Annals of Mathematical Logic, vol. 22 (1982), pp. 109–125.