Notre Dame Journal of Formal Logic

Nonconstructive Properties of Well-Ordered T2 topological Spaces

Kyriakos Keremedis and Eleftherios Tachtsis

Abstract

We show that none of the following statements is provable in Zermelo-Fraenkel set theory (ZF) answering the corresponding open questions from Brunner in ``The axiom of choice in topology'':

(i) For every T2 topological space (X, T) if X is well-ordered, then X has a well-ordered base,

(ii) For every T2 topological space (X, T), if X is well-ordered, then there exists a function f : X × W $ \rightarrow$ T such that W is a well-ordered set and f ({x} × W) is a neighborhood base at x for each x $ \in$ X,

(iii) For every T2 topological space (X, T), if X has a well-ordered dense subset, then there exists a function f : X × W $ \rightarrow$ T such that W is a well-ordered set and {x} = $ \cap$ f ({x} × W) for each x $ \in$ X.

Article information

Source
Notre Dame J. Formal Logic, Volume 40, Number 4 (1999), 548-553.

Dates
First available in Project Euclid: 30 January 2002

Permanent link to this document
https://projecteuclid.org/euclid.ndjfl/1012429718

Digital Object Identifier
doi:10.1305/ndjfl/1012429718

Mathematical Reviews number (MathSciNet)
MR1858242

Zentralblatt MATH identifier
0988.54006

Subjects
Primary: 03E25: Axiom of choice and related propositions
Secondary: 03E35: Consistency and independence results 54Gxx: Peculiar spaces

Citation

Keremedis, Kyriakos; Tachtsis, Eleftherios. Nonconstructive Properties of Well-Ordered T 2 topological Spaces. Notre Dame J. Formal Logic 40 (1999), no. 4, 548--553. doi:10.1305/ndjfl/1012429718. https://projecteuclid.org/euclid.ndjfl/1012429718


Export citation

References

  • Brunner, N., “The Axiom of Choice in topology,” Notre Dame Journal of Formal Logic, vol. 24 (1983), pp. 305–17. Zbl 0509.03027 MR 85e:03112
  • Cohen, P. J., Set Theory and the Continuum Hypothesis, Benjamin, New York, 1966. Zbl 0182.01301 MR 38:999
  • Felgner, U., and T. Jech, “Variants of the axiom of choice in set theory with atoms,” Fundamenta Mathematicæ, vol. 79 (1973), pp. 79–85. Zbl 0259.02052 MR 47:8302
  • Howard, P., and J. E. Rubin, Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, vol. 59, American Mathematical Society, Providence, 1998. Zbl 0947.03001 MR 99h:03026
  • Jech, T., The Axiom of Choice, North-Holland, Amsterdam, 1973. Zbl 0259.02051 MR 53:139
  • Kunen, K., Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1983. Zbl 0534.03026 MR 85e:03003
  • Monro, G. P., “Independence results concerning Dedekind-finite sets,” Journal of the Australian Mathematical Society, vol. 19 (1975), pp. 35–46. Zbl 0298.02066 MR 50:12718
  • Steen, L. A., and J. A. Seebach, Counterexamples in Topology, Dover, New York, 1995. Zbl 0211.54401 MR 96k:54001
  • Willard, S., General Topology, Addison-Wesley, Boston, 1968. Zbl 0205.26601 MR 41:9173