The Michigan Mathematical Journal

Chern–Weil Theory for Line Bundles with the Family Arakelov Metric

Michiel Jespers and Robin de Jong

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove a result of Chern–Weil type for canonically metrized line bundles on one-parameter families of smooth complex curves. Our result generalizes a result due to J. I. Burgos Gil, J. Kramer, and U. Kühn that deals with a line bundle of Jacobi forms on the universal elliptic curve over the modular curve with full level structure, equipped with the Petersson metric. Our main tool, as in the work by Burgos Gil, Kramer, and Kühn, is the notion of a b-divisor.

Article information

Source
Michigan Math. J., Advance publication (2019), 38 pages.

Dates
Received: 16 October 2017
Revised: 25 May 2018
First available in Project Euclid: 2 August 2019

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1564711314

Digital Object Identifier
doi:10.1307/mmj/1564711314

Subjects
Primary: 14D05: Structure of families (Picard-Lefschetz, monodromy, etc.) 14D06: Fibrations, degenerations 14E05: Rational and birational maps 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30] 32C30: Integration on analytic sets and spaces, currents {For local theory, see 32A25 or 32A27}

Citation

Jespers, Michiel; de Jong, Robin. Chern–Weil Theory for Line Bundles with the Family Arakelov Metric. Michigan Math. J., advance publication, 2 August 2019. doi:10.1307/mmj/1564711314. https://projecteuclid.org/euclid.mmj/1564711314


Export citation

References

  • [1] S. Y. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. USSR 86 (1974), 1164–1180.
  • [2] E. Arbarello, M. Cornalba, and P. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011.
  • [3] M. Baker and X. Faber, Metrized graphs, Laplacian operators, and electrical networks, Quantum graphs and their applications, Contemp. Math., 415, pp. 15–33, Amer. Math. Soc., Providence, RI, 2006.
  • [4] M. Baker and J. Nicaise, Weight functions on Berkovich curves, Algebra Number Theory 10 (2016), no. 10, 2053–2079.
  • [5] A. M. Botero, b-divisors on toric and toroidal embeddings, PhD thesis, Humboldt Universität Berlin, 2017.
  • [6] A. M. Botero, Intersection theory of toric b-divisors in toric varieties, J. Algebraic Geom. (to appear), preprint, arXiv:1701.03925.
  • [7] A. M. Botero and J. I. Burgos Gil, Intersection theory of toroidal b-divisors in toroidal varieties, in preparation.
  • [8] S. Boucksom, C. Favre, and M. Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449–494.
  • [9] S. Boucksom, C. Favre, and M. Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), 279–308.
  • [10] S. Boucksom, C. Favre, and M. Jonsson, Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom. 25 (2016), no. 1, 77–139.
  • [11] J. I. Burgos Gil, D. Holmes, and R. de Jong, Positivity of the height jump divisor, Int. Math. Res. Not., rnx169.
  • [12] J. I. Burgos Gil, D. Holmes, and R. de Jong, Singularities of the biextension metric for families of abelian varieties, Forum Math. Sigma 6(2018), e12.
  • [13] J. I. Burgos Gil, J. Kramer, and U. Kühn, The singularities of the invariant metric on the Jacobi line bundle, Recent advances in Hodge theory, London Math. Soc. Lecture Note Ser., 427, pp. 45–77, Cambridge Univ. Press, Cambridge, 2016.
  • [14] T. Chinburg and R. Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993), 1–44.
  • [15] Z. Cinkir, Explicit computation of certain Arakelov–Green functions, Kyoto J. Math. 54 (2014), 759–774.
  • [16] R. de Jong, Faltings delta-invariant and semistable degeneration, J. Differential Geom. 111 (2019), 241–301.
  • [17] P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry, Arcata, Calif., 1985, Contemp. Math., 67, pp. 93–177, 1987.
  • [18] X. Faber, Spectral convergence of the discrete Laplacian on models of a metrized graph, New York J. Math. 12 (2006), 97–121.
  • [19] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. 119 (1984), no. 2, 387–424.
  • [20] G. Faltings and C.-L. Chai, Degeneration of Abelian varieties, Ergeb. Math. Grenzgeb. (3), 22, Springer-Verlag, Berlin, 1990, With an appendix by David Mumford.
  • [21] R. Hain, Biextensions and heights associated to curves of odd genus, Duke Math. J. 61 (1990), no. 3, 859–898.
  • [22] R. Hain, Normal functions and the geometry of moduli spaces of curves, Handbook of moduli, volume I (G. Farkas, I. Morrison eds.), Adv. Lectures Math., XXIV, International Press, Boston, 2013.
  • [23] M. Jespers, An analogue of Chern–Weil theory for the line bundle of weak Jacobi forms on a non-compact modular surface, Master’s thesis, Universiteit Leiden, 2016.
  • [24] M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006.
  • [25] D. Lear, Extensions of normal functions and asymptotics of the height pairing, PhD thesis, University of Washington, 1990.
  • [26] D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272.
  • [27] M. Mustaţā and J. Nicaise, Weight functions on non-Archimedean analytic spaces and the Kontsevich–Soibelman skeleton, Algebraic Geom. 2 (2015), no. 3, 365–404.
  • [28] G. Pearlstein, $\mathrm{SL}_{2}$-Orbits and degenerations of mixed Hodge structure, J. Differential Geom. 74 (2006), 1–67.
  • [29] G. Pearlstein and C. Peters, Differential geometry of the mixed Hodge metric, Comm. Anal. Geom. (to appear), preprint, arXiv:1407.4082.
  • [30] V. Shokurov, $3$-Fold log models. Algebraic geometry, 4, J. Math. Sci. 81 (1996), 2667–2699.
  • [31] V. Shokurov, Prelimiting flips, Proc. Steklov Inst. Math. 240 (2003), no. 1, 75–213.
  • [32] S. A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom. 31 (1990), no. 2, 417–472.
  • [33] S. Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), 171–193.