The Michigan Mathematical Journal

Relative Q-Gradings from Bordered Floer Theory

Robert Lipshitz, Peter Ozsváth, and Dylan P. Thurston

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we show how to recover the relative Q-grading in Heegaard Floer homology from the noncommutative grading on bordered Floer homology.

Article information

Michigan Math. J., Volume 67, Issue 4 (2018), 827-838.

Received: 7 February 2017
Revised: 26 March 2017
First available in Project Euclid: 17 October 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57R58: Floer homology
Secondary: 57M27: Invariants of knots and 3-manifolds 53D40: Floer homology and cohomology, symplectic aspects


Lipshitz, Robert; Ozsváth, Peter; Thurston, Dylan P. Relative $\mathbb{Q}$ -Gradings from Bordered Floer Theory. Michigan Math. J. 67 (2018), no. 4, 827--838. doi:10.1307/mmj/1539763499.

Export citation


  • [1] J. E. Greene, Lattices, graphs, and Conway mutation, Invent. Math. 192 (2013), no. 3, 717–750.
  • [2] K. A. Frøyshov, An inequality for the $h$-invariant in instanton Floer theory, Topology 43 (2004), no. 2, 407–432.
  • [3] Y. Huang and V. G. B. Ramos, A topological grading on bordered Heegaard Floer homology, Quantum Topol. 6 (2015), no. 3, 403–449.
  • [4] Y. Huang and V. G. B. Ramos, An absolute grading on Heegaard Floer homology by homotopy classes of oriented 2-plane fields, 2011, arXiv:1112.0290.
  • [5] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Math. Monogr., 10, Cambridge University Press, Cambridge, 2007.
  • [6] D. A. Lee and R. Lipshitz, Covering spaces and $\mathbb{Q}$-gradings on Heegaard Floer homology, J. Symplectic Geom. 6 (2008), no. 1, 33–59.
  • [7] R. Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006), 955–1097.
  • [8] R. Lipshitz, P. Ozsváth, and D. Thurston, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015), no. 2, 525–724.
  • [9] R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, Computing $\widehat{\mathit{HF}}$ by factoring mapping classes, Geom. Topol. 18 (2014), no. 5, 2547–2681.
  • [10] R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, Bordered Heegaard Floer homology: invariance and pairing, 2008, arXiv:0810.0687.
  • [11] P. S. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), 179–261.
  • [12] P. S. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158.
  • [13] P. S. Ozsváth and Z. Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300.
  • [14] P. S. Ozsváth and Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326–400.
  • [15] R. Rustamov, Surgery formula for the renormalized Euler characteristic of Heegaard Floer homology, 2004, arXiv:math/0409294.
  • [16] S. Sarkar, Maslov index formulas for Whitney $n$-gons, J. Symplectic Geom. 9 (2011), no. 2, 251–270.
  • [17] S. Sarkar and J. Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. (2) 171 (2010), no. 2, 1213–1236.