The Michigan Mathematical Journal

Manifolds Which Admit Maps with Finitely Many Critical Points Into Spheres of Small Dimensions

Louis Funar and Cornel Pintea

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We construct, for m6 and 2nm, closed manifolds Mm with finite nonzero φ(Mm,Sn), where φ(M,N) denotes the minimum number of critical points of a smooth map MN. We also give some explicit families of examples for even m6 and n=3, taking advantage of the Lie group structure on S3. Moreover, there are infinitely many such examples with φ(Mm,Sn)=1. Eventually, we compute the signature of the manifolds M2n occurring for even n.

Article information

Source
Michigan Math. J., Volume 67, Issue 3 (2018), 585-615.

Dates
Received: 17 November 2016
Revised: 24 July 2017
First available in Project Euclid: 20 June 2018

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1529460326

Digital Object Identifier
doi:10.1307/mmj/1529460326

Mathematical Reviews number (MathSciNet)
MR3835565

Zentralblatt MATH identifier
06969985

Subjects
Primary: 57R45: Singularities of differentiable mappings 57R70: Critical points and critical submanifolds 58K05: Critical points of functions and mappings

Citation

Funar, Louis; Pintea, Cornel. Manifolds Which Admit Maps with Finitely Many Critical Points Into Spheres of Small Dimensions. Michigan Math. J. 67 (2018), no. 3, 585--615. doi:10.1307/mmj/1529460326. https://projecteuclid.org/euclid.mmj/1529460326


Export citation

References

  • [1] D. Andrica and L. Funar, On smooth maps with finitely many critical points, J. Lond. Math. Soc. 69 (2004), 783–800, Addendum, 73, 2006, 231–236.
  • [2] R. N. Araújo Dos Santos, D. Dreibelbis, and N. Dutertre, Topology of the real Milnor fiber for isolated singularities, real and complex singularities, Contemp. Math. 569 (2012), 67–75.
  • [3] R. N. Araújo Dos Santos and N. Dutertre, Topology of real Milnor fibration for non-isolated singularities, Int. Math. Res. Not. IMRN (2015), https://doi.org/10.1093/imrn/rnv286.
  • [4] R. N. Araújo Dos Santos, M. A. B. Hohlenwerger, O. Saeki, and T. O. Souza, New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations, Ann. Inst. Fourier (Grenoble) 66 (2016), 83–104.
  • [5] M. F. Atiyah, The signature of fibre-bundles, “Global analysis” (papers in honor of K. Kodaira), pp. 73–84, Univ. Tokyo Press, Tokyo, 1969.
  • [6] S. S. Chern, F. Hirzebruch, and J.-P. Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957), 587–596.
  • [7] M. Farber, Zeros of closed 1-forms, homoclinic orbits and Lusternik–Schnirelman theory, Topol. Methods Nonlinear Anal. 19 (2002), 123–152.
  • [8] M. Farber and D. Schütz, Closed 1-forms with at most one zero, Topology 45 (2006), 465–473.
  • [9] G. Friedman, Knot spinning, Handbook of knot theory (W. Menasco, M. Thistlethwaite, eds.), pp. 187–208, Elsevier, 2005. Chapter 4.
  • [10] L. Funar, Global classification of isolated singularities in dimensions $(4,3)$ and $(8,5)$, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 819–861.
  • [11] L. Funar, C. Pintea, and P. Zhang, Examples of smooth maps with finitely many critical points in dimensions $(4,3)$, $(8,5)$ and $(16,9)$, Proc. Amer. Math. Soc. 138 (2010), 355–365.
  • [12] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/1963), 155–176.
  • [13] A. Haefliger, Plongements de variétés dans le domaine stable, Séminaire Bourbaki 1962/1963, vol. 8, exp. no. 245, pp. 63–77, Soc. Math. France, Paris, 1964, 1995.
  • [14] A. Jacquemard, On the fiber of the compound of a real analytic function by a projection, Boll. Unione Mat. Ital., B 2 (1999), 263–278.
  • [15] L. H. Kauffman and W. D. Neumann, Products of knots, branched fibrations and sums of singularities, Topology 16 (1977), 369–393.
  • [16] K. Kodaira, A certain type of irregular algebraic surfaces, J. Anal. Math. 19 (1967), 207–215.
  • [17] F. Latour, Existence de $1$-formes fermées non singulières dans une classe de cohomologie de de Rham, Publ. Math. Inst. Hautes Études Sci. 80 (1994), 135–194.
  • [18] E. Looijenga, A note on polynomial isolated singularities, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math. 33 (1971), 418–421.
  • [19] P. W. Michor, Topics in differential geometry, Grad. Stud. Math., 93, A.M.S, 2008.
  • [20] J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergeb. Math. Grenzgeb. (3), 73, Springer Verlag, 1973.
  • [21] A. M. Neto and J. Seade, On the Lê-Milnor fibration for real analytic germs, arXiv:1604.08489.
  • [22] D. Rolfsen, Knots and links, AMS Chelsea Publishing AMS, Providence, RI, 1990.
  • [23] L. Rudolph, Isolated critical points of mappings from ${\mathbb{R}}^{4}$ to ${\mathbb{R}}^{2}$ and a natural splitting of the Milnor number of a classical fibered link. Part I: basic theory; examples, Comment. Math. Helv. 62 (1987), 630–645.
  • [24] F. Takens, The minimal number of critical points of a function on a compact manifold and the Lusternik–Schnirelman category, Invent. Math. 6 (1968), 197–244.
  • [25] W. P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), i–vi and99–130.
  • [26] C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269–274.