The Michigan Mathematical Journal

When are two Coxeter orbifolds diffeomorphic?

Michael Davis

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 63, Issue 2 (2014), 401-421.

Dates
First available in Project Euclid: 5 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1401973057

Digital Object Identifier
doi:10.1307/mmj/1401973057

Mathematical Reviews number (MathSciNet)
MR3215556

Zentralblatt MATH identifier
1365.57030

Subjects
Primary: 57R18: Topology and geometry of orbifolds 57M07: Topological methods in group theory 57R91: Equivariant algebraic topology of manifolds 57R55: Differentiable structures 20F55: Reflection and Coxeter groups [See also 22E40, 51F15]
Secondary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]

Citation

Davis, Michael. When are two Coxeter orbifolds diffeomorphic?. Michigan Math. J. 63 (2014), no. 2, 401--421. doi:10.1307/mmj/1401973057. https://projecteuclid.org/euclid.mmj/1401973057


Export citation

References

  • \beginbarticle \bauthor\binitsS. \bsnmAkbulut, \batitleA fake compact contractible 4-manifold, \bjtitleJ. Differential Geom. \bvolume33 (\byear1991), page335–\blpage356. \endbarticle \OrigBibText S. Akbulut, A fake compact contractible $4$-manifold, J. Differential Geom. 33 (1991), 335–356. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsJ. \bsnmCerf, \bbtitleSur les difféomorphismes de la sphère de dimension trois $(\Gamma_4=0)$, \bsertitleLecture Notes in Math., \bseriesno53 \bcomment(French), \bpublisherSpringer-Verlag, \blocationBerlin–New York, \byear1968. \endbbook \OrigBibText J. Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma_4=0)$ (French), Lecture Notes in Math. 53 Springer-Verlag, Berlin–New York, 1968. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleLa stratification naturelle des espaces de fonctions différentiables rélles et le théorème de la pseudo-isotopie \bcomment(French), \bjtitlePubl. Math. Inst. Hautes Études Sci. \bvolume39 (\byear1970), page5–\blpage173. \endbarticle \OrigBibText J. Cerf, La stratification naturelle des espaces de fonctions différentiables rélles et le théorème de la pseudo-isotopie (French), Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsR. \bsnmCharney and \bauthor\binitsM. W. \bsnmDavis, \batitleWhen is a Coxeter system determined by its Coxeter group? \bjtitleJ. Lond. Math. Soc. (2) \bvolume61 (\byear2000), page441–\blpage461. \endbarticle \OrigBibText R. Charney and M.W. Davis, When is a Coxeter system determined by its Coxeter group?, J. London Math. Soc. 61 (2000), 441-461. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsS. \bsnmChoi and \oauthor\binitsG.-S. \bsnmLee, Projective deformations of weakly orderable Coxeter orbifolds, preprint, \arxivurlarXiv:1207.3527. \endbotherref \OrigBibText S. Choi and G-S. Lee, Projective deformations of weakly orderable Coxeter orbifolds, arXiv:1207.3527, preprint. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. \bsnmCohen, \batitleHomeomorphisms between homotopy manifolds and their resolutions, \bjtitleInvent. Math. \bvolume10 (\byear1970), page239–\blpage250. \endbarticle \OrigBibText M. Cohen, Homeomorphisms between homotopy manifolds and their resolutions, Inv. Math. 10 (1970), 239–250. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsM. W. \bsnmDavis, \bbtitleMultiaxial actions on manifolds, \bsertitleLecture Notes in Math., \bseriesno643, \bpublisherSpringer-Verlag, \blocationBerlin–New York, \byear1978. \endbbook \OrigBibText M.W. Davis, Multiaxial Actions on Manifolds, Springer Lecture Notes in Math. 643, Springer-Verlag, Berlin–New York, 1978. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleUniversal G-manifolds, \bjtitleAmer. J. Math. \bvolume103 (\byear1981), page103–\blpage141. \endbarticle \OrigBibText M.W. Davis, Universal G-manifolds, Amer. J. Math. 103 (1981), 103–141. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle ––––, \batitleGroups generated by reflections and aspherical manifolds not covered by Euclidean space, \bjtitleAnn. of Math. (2) \bvolume117 (\byear1983), page293–\blpage325. \endbarticle \OrigBibText M.W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983), 293–325. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook ––––, \bbtitleThe geometry and topology of Coxeter groups, \bsertitleLondon Math. Soc. Monograph Series, \bseriesno32, \bpublisherPrinceton Univ. Press, \blocationPrinceton, \byear2008. \endbbook \OrigBibText M.W. Davis, The Geometry and Topology of Coxeter Groups, London Math. Soc. Monograph Series, vol. 32, Princeton Univ. Press, 2008. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter ––––, \bctitleLectures on orbifolds and reflection groups (\beditor\binitsL. \bsnmJi, \beditor\binitsS.-T. \bsnmYau, eds.), \bbtitleTransformation groups and moduli spaces of curves, \bsertitleALM, \bseriesno16, pp. page63–\blpage93, \bpublisherHigher Education Press, \blocationBeijing, \byear2010. \endbchapter \OrigBibText M.W. Davis, Lectures on orbifolds and reflection groups, in Transformation Groups and Moduli Spaces of Curves (eds. L. Ji and S-T. Yau) ALM 16, Higher Education Press, Beijing 2010, pp. 63–93. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. W. \bsnmDavis and \bauthor\binitsT. \bsnmJanuszkiewicz, \batitleConvex polytopes, Coxeter orbifolds and torus actions, \bjtitleDuke Math. J. \bvolume62 (\byear1991), page417–\blpage451. \endbarticle \OrigBibText M.W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), 417–451. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. \bsnmFreedman, \batitleThe topology of four-dimensional manifolds, \bjtitleJ. Differential Geom. \bvolume17 (\byear1982), page357–\blpage453. \endbarticle \OrigBibText M. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357–453. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmHatcher, \batitleA proof of the Smale conjecture, $\operatorname{Diff}(S^3)\simeq O(4)$, \bjtitleAnn. of Math. (2) \bvolume117 (\byear1983), page553–\blpage607. \endbarticle \OrigBibText A. Hatcher, A proof of the Smale conjecture, $\mathrm {Diff}(S^3)\simeq O(4)$, Ann. of Math. (2) 117 (1983), 553–607. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsA. \bsnmHattori and \bauthor\binitsT. \bsnmYoshida, \batitleLifting compact group actions in fiber bundles, \bjtitleJapan. J. Math. \bvolume2 (\byear1976), no. \bissue1, page13–\blpage25. \endbarticle \OrigBibText A. Hattori and T. Yoshida, Lifting compact group actions in fiber bundles, Journal J. Math. 2, No. 1 (1976), 13–25. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsW. C. \bsnmHsiang and \bauthor\binitsW. Y. \bsnmHsiang, \batitleDifferentiable actions of compact, connected classical groups: I, \bjtitleAmer. J. Math. \bvolume89 (\byear1967), page705–\blpage786. \endbarticle \OrigBibText W.C. Hsiang and W.Y. Hsiang, Differentiable actions of compact, connected classical groups: I. Amer. J. Math. 89 (1967), 705–786. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. \bsnmKervaire and \bauthor\binitsJ. \bsnmMilnor, \batitleGroups of homotopy spheres, I, \bjtitleAnn. of Math. (2) \bvolume77 (\byear1963), page504–\blpage537. \endbarticle \OrigBibText M. Kervaire and J. Milnor, Groups of homotopy spheres, I, Ann. of Math. (2) 77 (1963), 504–537. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsJ. \bsnmLevine, \batitleSemi-free circle actions on spheres, \bjtitleInvent. Math. \bvolume22 (\byear1973), page161–\blpage186. \endbarticle \OrigBibText J. Levine, Semi-free circle actions on spheres, Inventiones Math. 22 (1973), 161–186. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. \bsnmMasuda, \batitleEquivariant cohomology distinguishes toric manifolds, \bjtitleAdv. Math. \bvolume218 (\byear2008), no. \bissue6, page2005–\blpage2012. \endbarticle \OrigBibText M. Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math. 218 (2008), no. 6, 2005–2012. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. \bsnmMasuda and \bauthor\binitsT. \bsnmPanov, \batitleOn the cohomology of torus manifolds, \bjtitleOsaka J. Math. \bvolume43 (\byear2006), no. \bissue3, page711–\blpage746. \endbarticle \OrigBibText M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), no. 3, 711–746. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsV. \bsnmMetaftsis and \oauthor\binitsS. \bsnmPrassidis, Topological rigidity of quasitoric actions, preprint, \arxivurlarXiv:1301.0469v1. \endbotherref \OrigBibText V. Metaftsis and S. Prassidis, Topological rigidity of quasitoric actions, arXiv:1301.0469v1. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsJ. \bsnmMorgan and \bauthor\binitsG. \bsnmTian, \bbtitleRicci flow and the Poincaré conjecture, \bsertitleClay Mathematics Monographs, \bseriesno3, \bpublisherAmerican Mathematical Society, \blocationProvidence, RI; \bcommentClay Mathematics Institute, Cambridge, MA, \byear2007. \endbbook \OrigBibText J. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbotherref \oauthor\binitsG. \bsnmPerelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint, 2003, \arxivurlmath.DG/0307245. \endbotherref \OrigBibText G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. math.DG/0307245, 2003. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsS. \bsnmPrassidis and \bauthor\binitsB. \bsnmSpieler, \batitleRigidity of Coxeter groups, \bjtitleTrans. Amer. Math. Soc. \bvolume352 (\byear2000), page2619–\blpage2642. \endbarticle \OrigBibText S. Prassidis and B. Spieler, Rigidity of Coxeter groups, Trans. Amer. Math. Soc. 352 (2000), 2619–2642. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsG. W. \bsnmSchwarz, \batitleLifting smooth homotopies of orbit spaces, \bjtitlePubl. Math. Inst. Hautes Études Sci. \bvolume51 (\byear1980), page37–\blpage135. \endbarticle \OrigBibText G.W. Schwarz, Lifting smooth homotopies of orbit spaces, Publ. Math. Inst. Hautes Étud. Sci. 51 (1980), 37–135. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsT. E. \bsnmStewart, \batitleLifting group actions in fiber bundles, \bjtitleAnn. of Math. (2) \bvolume74 (\byear1961), page192–\blpage198. \endbarticle \OrigBibText T.E. Stewart, Lifting group actions in fiber bundles, Ann. of Math. 74 (1961), 192–198. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsD. \bsnmSullivan, \bctitleSingularities in spaces, \bbtitleLiverpool symposium, \bsertitleLecture Notes in Math., \bseriesno209, pp. page196–\blpage206, \bpublisherSpringer-Verlag, \blocationBerlin, \byear1971. \endbchapter \OrigBibText D. Sullivan, Singularities in spaces, in Liverpool Symposium, Springer Lecture Notes 209 (1971), 196–206. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsM. \bsnmWiemeler, \batitleExotic torus manifolds and equivariant smooth structures on quasitoric manifolds, \bjtitleMath. Z. \bvolume273 (\byear2013), page1063–\blpage1084. \endbarticle \OrigBibText M. Wiemeler, Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds, Math. Z. 273 (2013), 1063–1084. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsG. M. \bsnmZiegler, \bbtitleLectures on polytopes, \bsertitleGrad. Texts in Math., \bseriesno152, \bpublisherSpringer-Verlag, \blocationNew York, \byear1995. \endbbook \OrigBibText G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995. \endOrigBibText \bptokstructpyb \endbibitem \printaddresses