The Michigan Mathematical Journal

On families of rational curves in the Hilbert square of a surface

Flaminio Flamini, Andreas Leopold Knutsen, and Gianluca Pacienza

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 58, Issue 3 (2009), 639-682.

Dates
First available in Project Euclid: 10 December 2009

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1260475694

Digital Object Identifier
doi:10.1307/mmj/1260475694

Mathematical Reviews number (MathSciNet)
MR2595558

Zentralblatt MATH identifier
1191.14038

Subjects
Primary: 14H10: Families, moduli (algebraic) 14H51: Special divisors (gonality, Brill-Noether theory) 14J28: $K3$ surfaces and Enriques surfaces
Secondary: 14C05: Parametrization (Chow and Hilbert schemes) 14C25: Algebraic cycles 14D15: Formal methods; deformations [See also 13D10, 14B07, 32Gxx] 14E30: Minimal model program (Mori theory, extremal rays)

Citation

Flamini, Flaminio; Knutsen, Andreas Leopold; Pacienza, Gianluca. On families of rational curves in the Hilbert square of a surface. Michigan Math. J. 58 (2009), no. 3, 639--682. doi:10.1307/mmj/1260475694. https://projecteuclid.org/euclid.mmj/1260475694


Export citation

References

  • E. Arbarello and M. Cornalba, Su una congettura di Petri, Comment. Math. Helv. 56 (1981), 1--38.
  • W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact complex surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (4), 4, Springer-Verlag, Berlin, 2004.
  • T. Bauer, Seshadri constants of quartic surfaces, Math. Ann. 309 (1997), 475--481.
  • T. Bauer, Seshadri constants on algebraic surfaces, Math. Ann. 313 (1999), 547--583.
  • A. Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755--782.
  • ------, Some remarks on Kähler manifolds with $c_1=0,$ Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, pp. 1--26, Birkhäuser, Boston, 1983.
  • ------, Fano threefolds and $K3$ surfaces, Proceedings of the Fano conference (Turin, 2004), pp. 175--184, Univ. Torino.
  • M. Beltrametti, P. Francia, and A. J. Sommese, On Reider's method and higher order embeddings, Duke Math. J. 58 (1989), 425--439.
  • M. Beltrametti and A. J. Sommese, Zero cycles and $k$th order embeddings of smooth projective surfaces. With an appendix by Lothar Göttsche, Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math., 32, pp. 33--48, Academic Press, London, 1991.
  • A. Biancofiore, M. L. Fania, and A. Lanteri, Polarized surfaces with hyperelliptic sections, Pacific J. Math. 143 (1990), 9--24.
  • S. Boucksom, Le cône kählérien d'une variété hyperkählérienne, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 935--938.
  • D. Burns, Y. Hu, and T. Luo, HyperKähler manifolds and birational transformations in dimension 4, Vector bundles and representation theory (Columbia, 2002), Contemp. Math., 322, pp. 141--149, Amer. Math. Soc., Providence, RI, 2003.
  • X. Chen, Rational curves on $K3$ surfaces, J. Algebraic Geom. 8 (1999), 245--278.
  • ------, A simple proof that rational curves on $K3$ are nodal, Math. Ann. 324 (2002), 71--104.
  • L. Chiantini and E. Sernesi, Nodal curves on surfaces of general type, Math. Ann. 307 (1997), 41--56.
  • O. Debarre, Higher-dimensional algebraic geometry, Springer-Verlag, New York, 2001.
  • J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, pp. 87--104, Springer-Verlag, Berlin, 1992.
  • L. Ein, O. Küchle, and R. Lazarsfeld, Local positivity of ample line bundles, J. Differential Geom. 42 (1995), 193--219.
  • D. Faenzi, Bundles over the Fano threefold $V_5,$ Comm. Algebra 33 (2005), 3061--3080.
  • F. Flamini, Some results of regularity for Severi varieties of projective surfaces, Comm. Algebra 29 (2001), 2297--2311.
  • F. Flamini, A. L. Knutsen, and G. Pacienza, Singular curves on a $K3$ surface and linear series on their normalizations, Internat. J. Math. 18 (2007), 671--693.
  • J. Harris and I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998.
  • B. Hassett and Y. Tschinkel, Abelian fibrations and rational points on symmetric products, Internat. J. Math. 11 (2000), 1163--1176.
  • ------, Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal. 11 (2001), 1201--1228.
  • ------, Moving and ample cones of holomorphic symplectic fourfolds, preprint, arXiv:0710.0390v1.
  • E. Horikawa, Algebraic surfaces of general type with small $c^2_1.$ I, Ann. of Math. (2) 104 (1976), 357--387.
  • ------, Algebraic surfaces of general type with small $c^2_1.$ II, Invent. Math. 37 (1976), 121--155.
  • ------, Algebraic surfaces of general type with small $c^2_1.$ III, Invent. Math. 47 (1978), 209--248.
  • ------, Algebraic surfaces of general type with small $c^2_1.$ IV, Invent. Math. 50 (1978/79), 103--128.
  • Y. Hu and S.-T. Yau, HyperKähler manifolds and birational transformations, Adv. Theor. Math. Phys. 6 (2002), 557--574.
  • D. Huybrechts, Compact hyperkähler manifolds: Basic results, Invent. Math. 135 (1999), 63--113; Erratum, Invent. Math. 152 (2003), 209--212.
  • ------, The Kähler cone of a compact hyperkähler manifold, Math. Ann. 326 (2003), 499--513.
  • A. L. Knutsen, A note on Seshadri constants on general $K3$ surfaces, C. R. Math. Acad. Sci. Paris 346 (2008), 1079--1081.
  • ------, Remarks on families of curves with hyperelliptic normalizations, preprint, arXiv:0705.0906.
  • K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751--798.
  • J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996.
  • J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998.
  • K. Lønsted and S. L. Kleiman, Basics on families of hyperelliptic curves, Compositio Math. 38 (1979), 83--111.
  • S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus $11,$ Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016, pp. 334--353, Springer-Verlag, Berlin, 1983.
  • D. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), 105--121.
  • S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface, Invent. Math. 77 (1984), 101--116.
  • ------, Curves, $K3$ surfaces and Fano $3$-folds of genus $\leq10,$ Algebraic geometry and commutative algebra, vol. I, pp. 357--377, Kinokuniya, Tokyo, 1988.
  • D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195--204.
  • V. Nikulin, Integer symmetric bilinear forms and some of their applications, Math. USSR-Izv. 14 (1979), 103--167.
  • K. O'Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005), 1223--1274.
  • K. Oguiso, Seshadri constants in a family of surfaces, Math. Ann. 323 (2002), 625--631.
  • Z. Ran, Hodge theory and deformations of maps, Compositio Math. 97 (1995), 309--328.
  • I. Reider, Vector bundles of rank $2$ and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), 309--316.
  • B. Saint-Donat, Projective models of $K\text\rm-3$ surfaces, Amer. J. Math. 96 (1974), 602--639.
  • E. Sernesi, On the existence of certain families of curves, Invent. Math. 75 (1984), 25--57.
  • ------, Deformations of algebraic schemes, Grundlehren Math. Wiss., 334, Springer-Verlag, Berlin, 2006.
  • F. Serrano, The adjunction mappings and hyperelliptic divisors on surfaces, J. Reine Angew. Math. 381 (1987), 90--109.
  • F. Severi, Vorlesungen über algebraische Geometrie, Teubner, Leipzig, 1921.
  • A. J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), 593--603.
  • A. Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998), 505--510.
  • A. Tannenbaum, Families of curves with nodes on $K3$ surfaces, Math. Ann. 260 (1982), 239--253.
  • B. Tessier, Résolution simultanée I, II, Lecture Notes in Math., 777, pp. 71--146, Springer-Verlag, Berlin, 1980.
  • C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry (Trieste and Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, pp. 294--303, Cambridge Univ. Press, Cambridge, 1992.
  • ------, Théorie de Hodge et géométrie algébrique complexe. Cours Spécialisés, 10, Société Mathématique de France, Paris, 2002. [See also Hodge theory and complex algebraic geometry. I and II, Cambridge Stud. Adv. Math., 76 & 77, Cambridge Univ. Press, Cambridge.]
  • J. Wahl, Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529--577.
  • J. Wierzba, Contractions of symplectic varieties, J. Algebraic Geom. 12 (2003), 507--534.
  • ------, Birational geometry of symplectic $4$-folds, preprint.
  • J. Wierzba and J. Wísniewski, Small contractions of symplectic 4-folds, Duke Math. J. 120 (2003), 65--94.
  • R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
  • Revêtements étales et groupe fondamentale, Séminaire de Géométrie Algébrique du Bois Marie 1960/61 (SGA1), Lecture Notes in Math., 224, Springer-Verlag, Berlin, 1971.
  • E. Sernesi, Deformations of algebraic schemes, Grundlehren Math. Wiss., 334, Springer-Verlag, Berlin, 2006.
  • B. Tessier, Résolution simultanée I, II, Lecture Notes in Math., 777, pp. 71--146, Springer-Verlag, Berlin, 1980.
  • J. Wahl, Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529--577.