The Michigan Mathematical Journal

Functions of vanishing mean oscillation associated with operators and applications

Donggao Deng, Xuan Thinh Duong, Liang Song, Chaoqiang Tan, and Lixin Yan

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 56, Issue 3 (2008), 529-550.

Dates
First available in Project Euclid: 12 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1231770358

Digital Object Identifier
doi:10.1307/mmj/1231770358

Mathematical Reviews number (MathSciNet)
MR2488724

Zentralblatt MATH identifier
1158.32002

Subjects
Primary: 42B35: Function spaces arising in harmonic analysis 42B30: $H^p$-spaces 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 46E15: Banach spaces of continuous, differentiable or analytic functions

Citation

Deng, Donggao; Duong, Xuan Thinh; Song, Liang; Tan, Chaoqiang; Yan, Lixin. Functions of vanishing mean oscillation associated with operators and applications. Michigan Math. J. 56 (2008), no. 3, 529--550. doi:10.1307/mmj/1231770358. https://projecteuclid.org/euclid.mmj/1231770358


Export citation

References

  • P. Auscher, X. T. Duong, and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, preprint, 2005.
  • P. Auscher and P. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998).
  • G. Bourdaud, Remarques sur certains sous-espaces de $\text\rm BMO(\Bbb R^n)$ et de $\text\rm bmo(\Bbb R^n),$ Ann. Inst. Fourier (Grenoble) 52 (2002), 1187--1218.
  • G. Bourdaud, M. Lanza de Cristoforis, and W. Sickel, Functional calculus on BMO and related spaces, J. Funct. Anal. 189 (2002), 515--538.
  • R. R. Coifman, Y. Meyer, and E. M. Stein, Un nouvel espace adapté a l'étude des opérateurs définis par des intégrales singuliéres, Harmonic analysis (Cortona, 1982), Lecture Notes in Math., 992, pp. 1--15, Springer-Verlag, Berlin, 1983.
  • ------, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304--335.
  • R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569--645.
  • E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Math., 92, Cambridge Univ. Press, Cambridge, 1990.
  • D. G. Deng, On a generalized Carleson inequality, Studia Math. 78 (1984), 245--251.
  • X. T. Duong and L. X. Yan, New function spaces of BMO type, John--Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math. 58 (2005), 1375--1420.
  • ------, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943--973.
  • C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), 137--195.
  • F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415--426.
  • A. McIntosh, Operators which have an $H_\infty$-calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 14 (1986), 210--231.
  • E. M. Ouhabaz, Analysis of heat equations on domains, London Math. Soc. Monogr. Ser., 31, Princeton Univ. Press, Princeton, NJ, 2004.
  • D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391--405.
  • E. M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993.
  • A. Uchiyama, On the compactness of operators of the Hankel type, Tôhoku Math. J. 30 (1978), 163--171.
  • W. S. Wang, The characterization of $\lambda_\alpha(\Bbb R^n)$ and the predual spaces of tent space, Acta. Sci. Natur. Univ. Pekinensis 24 (1988), 535--550.
  • K. Yosida, Functional analysis, 5th ed., Springer-Verlag, Berlin, 1978.