The Michigan Mathematical Journal

A local ring such that the map between Grothendieck groups with rational coefficients induced by completion is not injective

Kazuhiko Kurano and Vasudevan Srinivas

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 57 (2008), 485-498.

Dates
First available in Project Euclid: 8 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1220879420

Digital Object Identifier
doi:10.1307/mmj/1220879420

Mathematical Reviews number (MathSciNet)
MR2492464

Zentralblatt MATH identifier
1185.13017

Subjects
Primary: 13D15: Grothendieck groups, $K$-theory [See also 14C35, 18F30, 19Axx, 19D50]
Secondary: 19A49: $K_0$ of other rings

Citation

Kurano, Kazuhiko; Srinivas, Vasudevan. A local ring such that the map between Grothendieck groups with rational coefficients induced by completion is not injective. Michigan Math. J. 57 (2008), 485--498. doi:10.1307/mmj/1220879420. https://projecteuclid.org/euclid.mmj/1220879420


Export citation

References

  • V. I. Danilov, The group of ideal classes of a complete ring, Mat. Sb. (N.S.) 6 (1968), 493--500.
  • H. Dao, On injectivity of maps between Grothendieck groups induced by completion, preprint.
  • W. Fulton, Intersection theory, 2nd ed., Springer-Verlag, Berlin, 1998.
  • H. Gillet and C. Soulé, K-théorie et nullité des multiplicites d'intersection, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 71--74.
  • R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, Berlin, 1977.
  • M. Hochster, Thirteen open questions in commutative algebra, Lecture given at LipmanFest (July 2004), $\langle $http://www.math.lsa.umich.edu/hochster/Lip.fest.pdf$\rangle .$
  • Y. Kamoi and K. Kurano, On maps of Grothendieck groups induced by completion, J. Algebra 254 (2002), 21--43.
  • K. Kurano, A remark on the Riemann--Roch formula for affine schemes associated with Noetherian local rings, Tôhoku Math. J. 48 (1996), 121--138.
  • ------, On Roberts rings, J. Math. Soc. Japan 53 (2001), 333--355.
  • ------, Numerical equivalence defined on Chow groups of Noetherian local rings, Invent. Math. 157 (2004), 575--619.
  • P. C. Roberts, The vanishing of intersection multiplicities and perfect complexes, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 127--130.