The Michigan Mathematical Journal

On the solid hull of the Hardy space Hp, 0 < p < 1

Miroljub Jevtić and Miroslav Pavlović

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 54, Issue 2 (2006), 439-446.

Dates
First available in Project Euclid: 23 August 2006

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1156345605

Digital Object Identifier
doi:10.1307/mmj/1156345605

Mathematical Reviews number (MathSciNet)
MR2253628

Zentralblatt MATH identifier
1118.30029

Subjects
Primary: 30D55 30H05: Bounded analytic functions 42A45: Multipliers

Citation

Jevtić, Miroljub; Pavlović, Miroslav. On the solid hull of the Hardy space H p , 0 &lt; p &lt; 1. Michigan Math. J. 54 (2006), no. 2, 439--446. doi:10.1307/mmj/1156345605. https://projecteuclid.org/euclid.mmj/1156345605


Export citation

References

  • P. Ahern and M. Jevti\' c, Duality and multipliers for mixed norm spaces, Michigan Math. J. 30 (1983), 53--64.
  • J. M. Anderson and A. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255--265.
  • G. Bennett, D. Stegenga, and R. Timony, Coefficients of Bloch and Lipschitz functions, Illinois J. Math. 25 (1981), 520--531.
  • O. Blasco, Multipliers on spaces of analytic functions, Canad. J. Math. 45 (1995), 44--64.
  • S. Buckley, Mixed norms and analytic function spaces, Math. Proc. R. Ir. Acad. 100A (2000), 1--9.
  • ------, Relative solidity for spaces of holomorphic functions, Math. Proc. R. Ir. Acad. 104A (2004), 83--97.
  • P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970.
  • P. Duren and A. Shields, Properties of $H^p$ $(0<p<1)$ and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255--262.
  • M. Jevti\' c and M. Pavlovi\' c, On multipliers from $H^p$ to $l^q,$ $0<q<p<1,$ Arch. Math. 56 (1991), 174--180.
  • ------, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531--545.
  • C. Kellogg, An extension of the Hausdorff--Young theorem, Michigan Math. J. 18 (1971), 121--127.
  • S. Kisliakov, Fourier coefficients of boundary values of analytic functions in the disc and bidisc, Trudy Mat. Inst. Steklov. 155 (1981), 77--91.
  • M. Mateljevi\' c and M. Pavlovi\' c, An extension of the Hardy--Littlewood inequality, Mat. Vesnik 6 (1982), 55--61.
  • ------, $L^p$-behavior of the integral means of analytic functions, Studia Math. 77 (1984), 219--237.
  • ------, Multipliers of $H^p$ and BMOA, Pacific J. Math. 146 (1990), 71--84.
  • M. Pavlovi\' c, Mixed norm spaces of analytic and harmonic functions, II, Publ. Inst. Math. (Beograd) (N.S.) 41(55) (1985), 97--110.
  • D. Vukoti\' c, On the coefficient multipliers of Bergman spaces, J. London Math. Soc. (2) 50 (1994), 341--348.
  • A. Zygmund, Trigonometric series I, II, Cambridge Univ. Press, New York, 1959.