Missouri Journal of Mathematical Sciences

On Functionally Hausdorff Spaces

Sami Lazaar

Full-text: Open access


This paper deals with functionally Hausdorff spaces. Some separation axioms which are introduced recently are studied in this paper. An interesting categorical properties of functionally Hausdorff spaces are given. Finally, we characterize topological spaces for which the functionally Hausdorff-reflection is a spectral space.

Article information

Missouri J. Math. Sci., Volume 25, Issue 1 (2013), 88-97.

First available in Project Euclid: 28 May 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 54B30: Categorical methods [See also 18B30]
Secondary: 54D10: Lower separation axioms (T0-T3, etc.) 54F65: Topological characterizations of particular spaces

functionally Hausdorff spaces separation axioms spectral spaces category functor


Lazaar, Sami. On Functionally Hausdorff Spaces. Missouri J. Math. Sci. 25 (2013), no. 1, 88--97. doi:10.35834/mjms/1369746400. https://projecteuclid.org/euclid.mjms/1369746400

Export citation


  • A. Ayache and O. Echi, The envelope of a subcategory in topology and group theory, Int. J. Math. Math. Sci., 21 (2005), 3787–3404.
  • K. Belaid, H-spectral spaces, Topology Appl., 153 (2006), 3019–3023.
  • K. Belaid, O. Echi, and R. Gargouri, A-spectral spaces, Topology Appl., 138 (2004), 315–322.
  • K. Belaid, O. Echi, and S. Lazaar, $T_{(\alpha,\beta)}$-spaces and the Wallman compactification, Int. J. Math. Math. Sci., 68 (2004), 3717–3735.
  • O. Echi and S. Lazaar, Reflective subcategories, Tychonoff spaces, and spectral spaces, Topology Proceeding, 34 (2009), 489–507.
  • P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra, 2 (1972), 169–191.
  • A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Springer-Verlag, Berlin, 1971.
  • M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43–60.
  • S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. Vol. 5, Springer-Verlag, New York, 1971.
  • L. A. Steen and J. A. Seebach, Counterexamples in Topology, Printed in the United States of America, 1968.
  • S. Willard, General Topology, Addison-Wesley Publishing Company, Reading, MA, 1970.