Missouri Journal of Mathematical Sciences

Lattice Properties of $T_1-L$ Topologies

Raji George and T. P. Johnson

Full-text: Open access

Abstract

We study the lattice structure of the set $ \Omega (X)$ of all $T_1$-$L$ topologies on a given set $X$. It is proved that $\Omega ( X ) $ has dual atoms (anti atoms) if and only if membership lattice $L$ has dual atoms (anti atoms). Some other properties of this lattice are also discussed.

Article information

Source
Missouri J. Math. Sci., Volume 24, Issue 2 (2012), 190-194.

Dates
First available in Project Euclid: 5 November 2012

Permanent link to this document
https://projecteuclid.org/euclid.mjms/1352138564

Digital Object Identifier
doi:10.35834/mjms/1352138564

Mathematical Reviews number (MathSciNet)
MR3052416

Zentralblatt MATH identifier
1256.54023

Subjects
Primary: 54A40: Fuzzy topology [See also 03E72]

Citation

George, Raji; Johnson, T. P. Lattice Properties of $T_1-L$ Topologies. Missouri J. Math. Sci. 24 (2012), no. 2, 190--194. doi:10.35834/mjms/1352138564. https://projecteuclid.org/euclid.mjms/1352138564


Export citation

References

  • C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 191–201.
  • O. Frolich, Das Halbordnungs system det Topologichen Raume auf einer Menge, Math. Annalen, 156 (1964), 79–95.
  • G. Gierz, et al., A Compendium of Continuous Lattices, Springer, Berlin, 1980.
  • G. Gratzer, Lattice Theory, University of Manitoba, 1971.
  • T. P. Johnson, On lattice of $L$-topologies, Indian Journal of Mathematics, 46.1 (2004), 21–26.
  • V. K. Jose and T. P. Johnson, On the lattice of stratified $L$-topologies, The Journal of Fuzzy Mathematics, 15.1 (2008), 157–162.
  • V. K. Jose and T. P. Johnson, Lattice of weakly induced $L$-topologies, The Journal of Fuzzy Mathematics, 16.2 (2008), 327–333.
  • T.-S. Liu, A note on maximal $T_1$-topologies, Portugal. Math., 18 (1959), 235–236.
  • R. Lowen, Fuzzy topological space and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621–633.
  • R. Srivastava, S. N. Lal, and A. K. Srivastava, On fuzzy $T_1$-topological space, J. Math. Anal. Appl., 127 (1987), 1–7.
  • M. Warner and R. G. McLean, On compact Hausdorff $L$ fuzzy spaces, Fuzzy Sets and Systems, 56 (1993), 103–110.