## Kodai Mathematical Journal

- Kodai Math. J.
- Volume 41, Number 2 (2018), 332-347.

### On Perez Del Pozo's lower bound of Weierstrass weight

Nan Wangyu, Masumi Kawasaki, and Fumio Sakai

#### Abstract

Let $V$ be a smooth projective curve over the complex number field with genus $g \geq 2$, and let $\sigma$ be an automorphism on $V$ such that the quotient curve $V/\langle \sigma \rangle$ has genus 0. We write $d$ (resp., $b$) for the order of $\sigma$ (resp., the number of fixed points of $\sigma$). When $d$ and $b$ are fixed, the lower bound of the (Weierstrass) weights of fixed points of $\sigma$ was obtained by Perez del Pozo [7]. We obtain necessary and sufficient conditions for when the lower bound is attained.

#### Article information

**Source**

Kodai Math. J., Volume 41, Number 2 (2018), 332-347.

**Dates**

First available in Project Euclid: 2 July 2018

**Permanent link to this document**

https://projecteuclid.org/euclid.kmj/1530496845

**Digital Object Identifier**

doi:10.2996/kmj/1530496845

**Mathematical Reviews number (MathSciNet)**

MR3824854

**Zentralblatt MATH identifier**

06936456

#### Citation

Wangyu, Nan; Kawasaki, Masumi; Sakai, Fumio. On Perez Del Pozo's lower bound of Weierstrass weight. Kodai Math. J. 41 (2018), no. 2, 332--347. doi:10.2996/kmj/1530496845. https://projecteuclid.org/euclid.kmj/1530496845