## Kodai Mathematical Journal

- Kodai Math. J.
- Volume 36, Number 3 (2013), 596-611.

### Certain holomorphic sections relating to 2-pointed Weierstrass gap sets on a compact Riemann surface

#### Abstract

For a compact Riemann surface *X* of genus *g*, we will construct a holomorphic section of the line bundle π_{1}^{*}*K*_{X}^{g(g+1)(g+2)/6} $\otimes$ π_{2}^{*}*K*_{X}^{g(g+1)(g+2)/6} over *X* × *X* whose zero set consists exactly of the points (*P*,*Q*) with the cardinalities of the Weierstrass gap sets *G*(*P*,*Q*) greater than the minimal value (*g*^{2} + 3*g*)/2.

#### Article information

**Source**

Kodai Math. J., Volume 36, Number 3 (2013), 596-611.

**Dates**

First available in Project Euclid: 5 November 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.kmj/1383660700

**Digital Object Identifier**

doi:10.2996/kmj/1383660700

**Mathematical Reviews number (MathSciNet)**

MR3161558

**Zentralblatt MATH identifier**

1285.14035

#### Citation

Gotoh, Tohru. Certain holomorphic sections relating to 2-pointed Weierstrass gap sets on a compact Riemann surface. Kodai Math. J. 36 (2013), no. 3, 596--611. doi:10.2996/kmj/1383660700. https://projecteuclid.org/euclid.kmj/1383660700