Kodai Mathematical Journal

Extensions of the Euler-Satake characteristic determine point singularities of orientable 3-orbifolds

Ryan Carroll and Christopher Seaton

Full-text: Open access

Abstract

We compute the extensions of the Euler-Satake characteristic of a closed, effective, orientable 3-orbifold corresponding to free and free abelian groups in terms of the number and type of point singularities of the orbifold. Using these computations, we show that the free Euler-Satake characteristics determine the number and type of point singularities, and that it takes an infinite collection of free Euler-Satake characteristics to do so. Additionally, we show that the stringy orbifold Euler characteristic determines all of the free abelian Euler-Satake characteristics for an orbifold in this class.

Article information

Source
Kodai Math. J., Volume 36, Number 1 (2013), 179-188.

Dates
First available in Project Euclid: 29 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1364562729

Digital Object Identifier
doi:10.2996/kmj/1364562729

Mathematical Reviews number (MathSciNet)
MR3043409

Zentralblatt MATH identifier
1272.57019

Citation

Carroll, Ryan; Seaton, Christopher. Extensions of the Euler-Satake characteristic determine point singularities of orientable 3-orbifolds. Kodai Math. J. 36 (2013), no. 1, 179--188. doi:10.2996/kmj/1364562729. https://projecteuclid.org/euclid.kmj/1364562729


Export citation