Kodai Mathematical Journal
- Kodai Math. J.
- Volume 34, Number 3 (2011), 485-504.
Behaviors of circular trajectories on hypersurfaces of type (A1) in a complex hyperbolic space
Abstract
We study circular trajectories for Sasakian magnetic fields on geodesic spheres, horospheres and tubes around totally geodesic complex hypersurfaces in a complex hyperbolic space. Investigating their extrinsic shapes in the ambient complex hyperbolic space, we give conditions for them to be bounded and to be closed. By use of information on lengths of circles in complex space forms, we give expressions of lengths of circular trajectories on those real hypersurfaces and show that their length spectrum is a discrete subset of a real line.
Article information
Source
Kodai Math. J., Volume 34, Number 3 (2011), 485-504.
Dates
First available in Project Euclid: 10 November 2011
Permanent link to this document
https://projecteuclid.org/euclid.kmj/1320935555
Digital Object Identifier
doi:10.2996/kmj/1320935555
Mathematical Reviews number (MathSciNet)
MR2855836
Zentralblatt MATH identifier
1231.53048
Citation
Bao, Tuya; Adachi, Toshiaki. Behaviors of circular trajectories on hypersurfaces of type ( A 1 ) in a complex hyperbolic space. Kodai Math. J. 34 (2011), no. 3, 485--504. doi:10.2996/kmj/1320935555. https://projecteuclid.org/euclid.kmj/1320935555