Kodai Mathematical Journal

An inequality of Frank, Steinmetz and Weissenborn

James K. Langley

Full-text: Open access

Abstract

An inequality proved by Frank, Steinmetz and Weissenborn relates the frequency of poles of a function meromorphic in the plane to the frequency of zeros of a linear differential polynomial in that function with small coefficients. A version of this inequality is established in terms of the frequency of distinct zeros of the linear differential polynomial.

Article information

Source
Kodai Math. J., Volume 34, Number 3 (2011), 383-389.

Dates
First available in Project Euclid: 10 November 2011

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1320935548

Digital Object Identifier
doi:10.2996/kmj/1320935548

Mathematical Reviews number (MathSciNet)
MR2855829

Zentralblatt MATH identifier
1251.30034

Citation

Langley, James K. An inequality of Frank, Steinmetz and Weissenborn. Kodai Math. J. 34 (2011), no. 3, 383--389. doi:10.2996/kmj/1320935548. https://projecteuclid.org/euclid.kmj/1320935548


Export citation