Kodai Mathematical Journal

Blaschke products with derivative in function spaces

David Protas

Full-text: Open access

Abstract

Let B be a Blaschke product with zeros {an}. If B$\in$ Apα for certain p and α, it is shown that Σn (1 - |an|)β < ∞ for appropriate values of β. Also, if {an} is uniformly discrete and if B$\in$ Hp or B$\in$ A1+p for any p $\in$ (0,1), it is shown that Σn (1 - |an|)1-p < ∞.

Article information

Source
Kodai Math. J., Volume 34, Number 1 (2011), 124-131.

Dates
First available in Project Euclid: 31 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1301576766

Digital Object Identifier
doi:10.2996/kmj/1301576766

Mathematical Reviews number (MathSciNet)
MR2786785

Zentralblatt MATH identifier
1213.30089

Citation

Protas, David. Blaschke products with derivative in function spaces. Kodai Math. J. 34 (2011), no. 1, 124--131. doi:10.2996/kmj/1301576766. https://projecteuclid.org/euclid.kmj/1301576766


Export citation