Kodai Mathematical Seminar Reports

Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian $3$-structure

Shigeru Ishihara

Full-text: Open access

Article information

Source
Kodai Math. Sem. Rep., Volume 25, Number 3 (1973), 321-329.

Dates
First available in Project Euclid: 1 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138846820

Digital Object Identifier
doi:10.2996/kmj/1138846820

Mathematical Reviews number (MathSciNet)
MR0324592

Zentralblatt MATH identifier
0267.53023

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citation

Ishihara, Shigeru. Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian $3$-structure. Kodai Math. Sem. Rep. 25 (1973), no. 3, 321--329. doi:10.2996/kmj/1138846820. https://projecteuclid.org/euclid.kmj/1138846820


Export citation

References

  • [1] ALEKSEEVSKII, D. V., Riemannian spaces with exceptional holonomy groups. Funktsional' nyi Analiz i Ego Prilozhenyia 2 (1968), 1-10.
  • [2] ALEKSEEVSKII, D. V., Compact quaternion spaces. Funktsiona nyi Analiz l Ego Prilozhenyi 2 (1968), 11-20.
  • [3] GRAY, A., A note on manifolds whose holonomy group is a subgroup of SP(W SP(1).Michigan Math. J. 16 (1969), 125-128.
  • [4] HATAKEYAMA, Y. Y. OGAWA, AND S. TANNO, Some properties of manifolds wit contact metric structure. Thoku Math. J. 15 (1963), 42-48.
  • [5] ISHIHARA, S., Notes on quaternion Kahlean manifolds. To appear in Journ. o Diff. Geon.
  • [6] ISHIHARA, S., AND M. KONISHI, Fibred Riemannian space with Sasakian 3-struc ture. Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo (1972), 179-194.
  • [7] KRAINES, V. K., Topology of quatermonic manifolds. Trans. Amer. Math. Soc.12 (1966), 357-367.
  • [8] SASAKI, S., Almost contact manifolds I, II. Lecture note, Tohoku Univ. (1965, 1967)
  • [9] WOLF, J. A., Complex homogenous contact manifolds and quaternionic symmetri spaces. J. Math. Mech. 14 (1963), 1033-1047.