Kodai Mathematical Journal

On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension. II.

Yoshiaki Fukuma

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 23, Number 1 (2000), 136-149.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138044161

Digital Object Identifier
doi:10.2996/kmj/1138044161

Mathematical Reviews number (MathSciNet)
MR1749390

Zentralblatt MATH identifier
0967.14007

Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves
Secondary: 14J30: $3$-folds [See also 32Q25]

Citation

Fukuma, Yoshiaki. On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension. II. Kodai Math. J. 23 (2000), no. 1, 136--149. doi:10.2996/kmj/1138044161. https://projecteuclid.org/euclid.kmj/1138044161


Export citation

References

  • [BS] BELTRAMETTI, M. C. AND SOMMESE, A. J., The Adjunction Theory of Complex Projective Varieties, de Gruyter Expo. Math., 16, Walter de Gruyter, Berlin, New York, 1995.
  • [FjO] FUJITA, T., Classification Theories of Polarized Varieties, London Math. Soc. Lectur Note Ser., 155, Cambridge Univ. Press, 1990.
  • [Fjl] FUJITA, T., Remarks on quasi-polazed varieties, Nagoya Math. J., 115 (1989), 105-123
  • [FkO] FUKUMA, Y., A lower bound forthe sectional genus of quasi-polarized surfaces, Geom Dedicata, 64 (1997), 229-251.
  • [Fkl] FUKUMA, Y., A lower bound forsectional genus of quasi-polarized manifolds, J. Math Soc. Japan, 49 (1997), 339-362.
  • [Fk2] FUKUMA, Y., Alower bound for sectional genus ofquasi-polazed manifolds II, preprint
  • [Fk3] FUKUMA, Y., On sectional genus of quasi-polazed manifolds with non-negative Kodair dimension, Math. Nachr., 180 (1996), 75-84.
  • [Fk4] FUKUMA, Y., On sectional genus of quasi-polarized 3-folds, Trans. Amer. Math. Soc, 351 (1999), 363-37
  • [Fk5] FUKUMA, Y., A lower bound for KXL of quasi-polarized surfaces (X, L) with non-negativ Kodaira dimension, Cand. J. Math., 50 (1998), 1209-1235.
  • [KMM] KAWAMATA, Y., MATSUDA, K. AND MATSUKI, K., Introduction to the minimal mode problem, Adv. Stud. Pure Math., 10, Kinokumya, Tokyo, 1987, 283-360.
  • [X] XIAO, G., Irregularity of surfaces with a linear pencil, Duke Math. J., 55 (1987), 597 602.

See also

  • Part I: Yoshiaki Fukuma. On the sectional geometric genus of quasi-polarized varieties. I. Math. Nachr., vol. 180 (1996), pp. 75-84.