Kodai Mathematical Journal

A classification of trigonal Riemann surfaces

Robert D. M. Accola

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 23, Number 1 (2000), 81-87.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138044156

Digital Object Identifier
doi:10.2996/kmj/1138044156

Mathematical Reviews number (MathSciNet)
MR1749385

Zentralblatt MATH identifier
0966.14021

Subjects
Primary: 14H51: Special divisors (gonality, Brill-Noether theory)
Secondary: 14H55: Riemann surfaces; Weierstrass points; gap sequences [See also 30Fxx]

Citation

Accola, Robert D. M. A classification of trigonal Riemann surfaces. Kodai Math. J. 23 (2000), no. 1, 81--87. doi:10.2996/kmj/1138044156. https://projecteuclid.org/euclid.kmj/1138044156


Export citation

References

  • [1] ACCOLA, R. D. M., Topics m the theory of Riemann surfaces, Lecture Notes in Math., 1595, Springer Verlag, 1991.
  • [2] COPPENS, M., The Weierstrass gap sequence of the total ramification points of trigona coverings of P\Indag. Math., 47 (1985), pp. 245-270.
  • [3] COPPENS, M., The Weierstrass gap sequence of the ordinary ramification points of trigona coverings of P; existence of a kind of Weierstrass gap sequence, J. Pure Appl. Algebra, 43 (1986), pp. 11-25.
  • [4] HENSEL, K. AND LANDSBERG, G., Theoe der algebraischen Funktionen einer Vaablen un ihre Anwendung auf algebraische Kurven und Abelsche Integrale, Chelsea, New York, 1965, (Leipzig, 1902).
  • [5] KATO, T., Subspaces of trigonal Riemann surfaces, Kodai Math. J., 12 (1989), pp. 72-91
  • [6] KATO, T. AND HORIUCHI, R., Weierstrass gap sequences at the ramification points of trigona Riemann surfaces, J. Pure Appl. Algebra, 50 (1988), pp. 271-285.
  • [7] MARONI, A., Le see linea speciali sulle curve tgonali, Ann. Mat. Pura Appl. (4), 2 (1946), pp. 343-354.
  • [8] SEIFERT, H. AND THRELFALL, W., Lehrbuch der Topologie, Chelsea, New York, 1945, (B. G. Teubner, Leipzig, 1934)