Kodai Mathematical Journal

Rotationally invariant cylindrical measures. I.

Michie Maeda

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 6, Number 1 (1983), 14-25.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138036658

Digital Object Identifier
doi:10.2996/kmj/1138036658

Mathematical Reviews number (MathSciNet)
MR0698322

Zentralblatt MATH identifier
0523.28016

Subjects
Primary: 28C20: Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) [See also 46G12, 58C35, 58D20, 60B11]
Secondary: 60B11: Probability theory on linear topological spaces [See also 28C20] 60G15: Gaussian processes

Citation

Maeda, Michie. Rotationally invariant cylindrical measures. I. Kodai Math. J. 6 (1983), no. 1, 14--25. doi:10.2996/kmj/1138036658. https://projecteuclid.org/euclid.kmj/1138036658


Export citation

References

  • [1] A. BADRIKIAN AND S. CHEVET, Mesures cylindques, espaces de Wiener et fonctions aleatoires gaussiennes, Lecture Notes in Mathematics, vol. 379, Springer Verlag, Berlin--Heidelberg--New York, 1974.
  • [2] R. M. DUDLEY, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis, 1 (1967), 290-330.
  • [3] R. M. DUDLEY, J. FELDAIAN AND L. LE CAM, On semmorms and probabilities, and abstract Wiener spaces, Ann. of Math., 93 (1971), 390-408.
  • [4] L. GROSS, Measurable functions on Hilbert space, Trans. Amer. Math. Soc, 105 (1962), 372-390.
  • [5] L. GROSS, Abstract Wiener spaces, Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and probability, 1965, 31-42.
  • [6] L. GROSS, Potential theory on Hilbert space, J. Functional Analysis, 1 (1967), 123-181.
  • [7] L. GROSS, Abstract Wiener measure and infinite dimensional potential theory, Lectures in modern analysis and applications II, Lecture Notes in Mathematics, vol. 140, Springer Verlag, Berlin--Heidelberg--New York, 1970, 84-116.
  • [8] L. SCHWARTZ, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, Bombay, 1973.
  • [9] M. MAEDA, Rotation-invariant cylindrical measures, Natur. Sci. Rep. Ochanomizu Univ., 31 (1980), 47-59.
  • [10] Y. UMEMURA, Measures on infinite dimensional vector spaces, Publ. Res. Inst. Math. Sci. Ser. A, 1 (1965), 1-47.