Kyoto Journal of Mathematics
- Kyoto J. Math.
- Volume 58, Number 2 (2018), 427-491.
Relative trace formulas for unitary hyperbolic spaces
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We develop relative trace formulas of unitary hyperbolic spaces for split rank unitary groups over totally real number fields.
Article information
Source
Kyoto J. Math., Volume 58, Number 2 (2018), 427-491.
Dates
Received: 31 March 2016
Revised: 19 August 2016
Accepted: 26 September 2016
First available in Project Euclid: 24 March 2018
Permanent link to this document
https://projecteuclid.org/euclid.kjm/1521856811
Digital Object Identifier
doi:10.1215/21562261-2017-0025
Mathematical Reviews number (MathSciNet)
MR3799705
Zentralblatt MATH identifier
06896957
Subjects
Primary: 11F72: Spectral theory; Selberg trace formula
Secondary: 11F67: Special values of automorphic $L$-series, periods of modular forms, cohomology, modular symbols 11F36
Keywords
relative trace formulas Eisenstein series orbital integrals
Citation
Tsuzuki, Masao. Relative trace formulas for unitary hyperbolic spaces. Kyoto J. Math. 58 (2018), no. 2, 427--491. doi:10.1215/21562261-2017-0025. https://projecteuclid.org/euclid.kjm/1521856811
References
- [1] E. Carletti, G. Monti Bragadin, and A. Perelli, On general $L$-functions, Acta Arith. 66 (1994), 147–179.
- [2] H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geom. 17 (1982), 239–253.Zentralblatt MATH: 0494.58029
Digital Object Identifier: doi:10.4310/jdg/1214436921
Project Euclid: euclid.jdg/1214436921 - [3] M. Eguchi, S. Koizumi, and M. Mamiuda, The expressions of the Harish-Chandra $C$-functions of semisimple Lie groups $\mathrm{Spin}(n,1)$, $\mathrm{SU}(n,1)$, J. Math. Soc. Japan 51 (1999), 955–985.Zentralblatt MATH: 0937.22007
Digital Object Identifier: doi:10.2969/jmsj/05140955
Project Euclid: euclid.jmsj/1213107830 - [4] J. Faraut, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. (9) 58 (1979), 369–444.Zentralblatt MATH: 0436.43011
- [5] Y. Z. Flicker, On distinguished representations, J. Reine Angew. Math. 418 (1991), 139–172.
- [6] Y. Z. Flicker, Cyclic automorphic forms on a unitary group, J. Math. Kyoto Univ. 37 (1997), 367–439.Zentralblatt MATH: 0929.11018
Digital Object Identifier: doi:10.1215/kjm/1250518264
Project Euclid: euclid.kjm/1250518264 - [7] S. Gelbart and E. M. Lapid, Lower bounds for automorphic $L$-functions at the edge of the critical strip, Amer. J. Math. 128 (2006), 619–638.
- [8] S. Gelbart, I. Piatetski-Shapiro, and S. Rallis, Explicit Constructions of Automorphic L-Functions, Lecture Notes in Math. 1254, Springer, Berlin, 1987.Zentralblatt MATH: 0612.10022
- [9] G. Heckman and H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, Perspect. in Math. 16, Academic Press, San Diego, Calif., 1994.
- [10] H. Jacquet, On the nonvanishing of some $L$-functions, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), 117–155.
- [11] H. Jacquet, “Automorphic spectrum of symmetric spaces” in Representation Theory and Automorphic Forms (Edinburgh, 1996), Proc. Sympos. Pure Math. 61, Amer. Math. Soc., Providence, 1997, 443–455.
- [12] H. Jacquet and N. Chen, Positivity of quadratic base change $L$-functions, Bull. Soc. Math. France 129 (2001), 33–90.
- [13] H. Jacquet, K. F. Lai, and S. Rallis, A trace formula for symmetric spaces, Duke Math. J. 70 (1993), 305–372.Zentralblatt MATH: 0795.22008
Digital Object Identifier: doi:10.1215/S0012-7094-93-07006-8
Project Euclid: euclid.dmj/1077290701 - [14] S. S. Kudla and J. J. Milson, The theta correspondence and harmonic forms, II, Math. Ann. 277 (1987), 267–314.
- [15] J.-P. Labesse and W. Müller, Weak Weyl’s law for congruence subgroups, Asian J. Math. 8 (2004), 733–745.
- [16] E. M. Lapid, On the fine spectral expansion of Jacquet’s relative trace formula, J. Inst. Math. Jussieu 6 (2006), 263–308.
- [17] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren Math. Wiss. 52, Springer, New York, 1966.Zentralblatt MATH: 0143.08502
- [18] C. Moeglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Math. 113, Cambridge Univ. Press, Cambridge, 1995.Zentralblatt MATH: 0846.11032
- [19] T. Oda and M. Tsuzuki, Automorphic Green functions associated with the secondary spherical functions, Publ. Res. Inst. Math. Sci. 39 (2003), 451–533.
- [20] T. Oda and M. Tsuzuki, The secondary spherical functions and automorphic Green currents for certain symmetric pairs, Pure Appl. Math. Q. 5 (2009), 977–1028.
- [21] S. Rallis and G. Schiffmann, “Distributions invarantes par le groupe orthogonal” in Analyse harmonique sur les groupes de Lie (Nancy-Strasbourg, 1973–1975), Lecture Notes in Math. 497, Springer, Berlin, 1975, 494–642.
- [22] G. Shimura, Arithmetic of unitary groups, Ann. of Math. (2) 79 (1964), 369–409.
- [23] T. Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan 24 (1972), 132–188.Zentralblatt MATH: 0227.10031
Digital Object Identifier: doi:10.2969/jmsj/02410132
Project Euclid: euclid.jmsj/1259849858 - [24] M. Tsuzuki, Real Shintani functions on $U(n,1)$, J. Math. Sci. Univ. Tokyo 8 (2001), 609–688.
- [25] M. Tsuzuki, Limit formulas of period integrals for a certain symmetric pair, J. Funct. Anal. 255 (2008), 1139–1190.
- [26] M. Tsuzuki, Spectral means of central values of automorphic $L$-functions for $\mathrm{GL}(2)$, Mem. Amer. Math. Soc. 235 (2015), no. 1110.
- [27] M. Tsuzuki, Orbital integrals on unitary hyperbolic spaces over ${\frak p}$-adic fields, Tokyo J. Math. 39 (2017), 923–975.
- [28] M. Tsuzuki, Distinguished automorphic spectrum of unitary groups, in preparation.
- [29] S. P. Wang, “Embedding of Flensted-Jensen modules in $L^{2}(\Gamma\backslash G)$ in the non-compact case” in Cohomology of Arithmetic Groups and Automorphic Forms (Luminy-Marseille, 1989), Lecture Notes in Math. 1447, Springer, Berlin, 1990, 333–356.
- [30] A. Weil, Adeles and Algebraic Groups, with appendices by M. Demazure and T. Ono, Progr. Math. 23, Birkhäuser, Boston, 1982.
- [31] A. Yukie, Shintani Zeta Functions, London Math. Soc. Lecture Note Ser. 183, Cambridge Univ. Press, Cambridge, 1993.Zentralblatt MATH: 0801.11021
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Conditional Base Change for Unitary Groups
Harris, Michael and Labesse, Jean-Pierre, Asian Journal of Mathematics, 2004 - Orbital Integrals on Unitary Hyperbolic Spaces Over $\frak p$-adic Fields
TSUZUKI, Masao, Tokyo Journal of Mathematics, 2017 - Companion forms for unitary and symplectic groups
Gee, Toby and Geraghty, David, Duke Mathematical Journal, 2012
- Conditional Base Change for Unitary Groups
Harris, Michael and Labesse, Jean-Pierre, Asian Journal of Mathematics, 2004 - Orbital Integrals on Unitary Hyperbolic Spaces Over $\frak p$-adic Fields
TSUZUKI, Masao, Tokyo Journal of Mathematics, 2017 - Companion forms for unitary and symplectic groups
Gee, Toby and Geraghty, David, Duke Mathematical Journal, 2012 - Motivic fundamental groups and integral points
Hadian, Majid, Duke Mathematical Journal, 2011 - Local cut points and splittings of relatively hyperbolic groups
Haulmark, Matthew, Algebraic & Geometric Topology, 2019 - 3-Isogeny Selmer groups and ranks of Abelian varieties in quadratic twist families over a number field
Bhargava, Manjul, Klagsbrun, Zev, Lemke Oliver, Robert J., and Shnidman, Ari, Duke Mathematical Journal, 2019 - On an exact mass formula of Shimura
Gan, Wee Teck, Hanke, Jonathan P., and Yu, Jiu-Kang, Duke Mathematical Journal, 2001 - C
∗
-Algebras from Groupoids on Self-Similar Groups
Yi, Inhyeop, Abstract and Applied Analysis, 2013 - On the arithmetic transfer conjecture for exotic smooth formal moduli spaces
Rapoport, M., Smithling, B., and Zhang, W., Duke Mathematical Journal, 2017 - On $2$-class field towers of some real quadratic number fields with $2$-class groups of rank $3$
Mouhib, A., Illinois Journal of Mathematics, 2013