Kyoto Journal of Mathematics

Local epsilon isomorphisms

David Loeffler, Otmar Venjakob, and Sarah Livia Zerbes

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we prove the “local ε-isomorphism” conjecture of Fukaya and Kato for a particular class of Galois modules, obtained by interpolating the twists of a fixed crystalline representation of GQp by a family of characters of GQp. This can be regarded as a local analogue of the Iwasawa main conjecture for abelian p-adic Lie extensions of Qp, extending earlier work of Kato for rank one modules and of Benois and Berger for the cyclotomic extension. We show that such an ε-isomorphism can be constructed using the 2-variable version of the Perrin-Riou regulator map constructed by the first and third authors.

Article information

Kyoto J. Math., Volume 55, Number 1 (2015), 63-127.

First available in Project Euclid: 13 March 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R23: Iwasawa theory
Secondary: 11S40: Zeta functions and $L$-functions [See also 11M41, 19F27]


Loeffler, David; Venjakob, Otmar; Zerbes, Sarah Livia. Local epsilon isomorphisms. Kyoto J. Math. 55 (2015), no. 1, 63--127. doi:10.1215/21562261-2848124.

Export citation


  • [1] D. Benois, On the Iwasawa theory of crystalline representations, Duke Math. J. 104 (2000), 211–267.
  • [2] D. Benois and L. Berger, Théorie d’Iwasawa des représentations cristallines, II, Comment. Math. Helv. 83 (2008), 603–677.
  • [3] L. Berger, Bloch and Kato’s exponential map: Three explicit formulas, Doc. Math. Extra Vol. (2003), 99–129.
  • [4] Berger, L., Limites de représentations cristallines, Compos. Math. 140 (2004), 1473–1498.
  • [5] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Grundlehren Math. Wiss. 261, Springer, Berlin, 1984.
  • [6] M. Breuning, Determinant functors on triangulated categories, J. K-Theory 8 (2011), 251–291.
  • [7] J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob, The $\operatorname{GL}_{2}$ main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 163–208.
  • [8] P. Colmez, Théorie d’Iwasawa des représentations de Rham d’un corps local, Ann. of Math. (2) 148 (1998), 485–571.
  • [9] P. Deligne, “Les constantes des équations fonctionnelles des fonctions $L$” in Modular Functions of One Variable, II (Antwerp, 1972), Lecture Notes in Math. 349, Springer, Berlin, 1973, 501–597.
  • [10] P. Deligne, “Le déterminant de la cohomologie” in Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985), Contemp. Math. 67, Amer. Math. Soc., Providence, 1987, 93–177.
  • [11] J.-M. Fontaine, “Représentations $p$-adiques semi-stables,” with an appendix by P. Colmez, in Périodes $p$-adiques (Bures-sur-Yvette, France, 1988), Astérisque 223, Soc. Math. France, Montrouge, 1994, 113–184.
  • [12] T. Fukaya and K. Kato, “A formulation of conjectures on $p$-adic zeta functions in noncommutative Iwasawa theory” in Proceedings of the St. Petersburg Mathematical Society. Vol. XII, Amer. Math. Soc. Transl. Ser. (2) 219, Amer. Math. Soc., Providence, 2006, 1–85.
  • [13] F. F. Knudsen, Determinant functors on exact categories and their extensions to categories of bounded complexes, Michigan Math. J. 50 (2002), 407–444.
  • [14] M. Lazard, Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Publ. Math. Inst. Hautes Études Sci. 14 (1962), 47–75.
  • [15] A. Lei, D. Loeffler, and S. L. Zerbes, Wach modules and Iwasawa theory for modular forms, Asian J. Math. 14 (2010), no. 4, 475–528.
  • [16] A. Lei, D. Loeffler, S. L. Zerbes, Coleman maps and the $p$-adic regulator, Algebra Number Theory 5 (2011), 1095–1131.
  • [17] D. Loeffler and S. L. Zerbes, Iwasawa theory and $p$-adic $L$-functions for $\mathbf{Z}_{p}^{2}$-extensions, Int. J. Number Theory 10 (2014), 2045–2095.
  • [18] K. Nakamura, A generalization of Kato’s local epsilon-conjecture for (phi, Gamma)-modules over the Robba ring, preprint, arXiv:1305.0880v2 [math.NT]
  • [19] J. Nekovář, Selmer Complexes, Astérisque 310, Soc. Math. France, Montrouge, 2006, viii+559.
  • [20] B. Perrin-Riou, Théorie d’Iwasawa et hauteurs $p$-adiques, Invent. Math. 109 (1992), 137–185.
  • [21] B. Perrin-Riou, Théorie d’Iwasawa des représentations $p$-adiques sur un corps local, with an appendix by J.-M. Fontaine, Invent. Math. 115 (1994), 81–161.
  • [22] B. Perrin-Riou, Théorie d’Iwasawa et loi explicite de réciprocité, Doc. Math. 4 (1999), 219–273.
  • [23] P. Schneider and J. Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), 145–196.
  • [24] O. Venjakob, On Kato’s local $\varepsilon$-isomorphism conjecture for rank one Iwasawa modules, Algebra Number Theory 7 (2013), 2369–2416.
  • [25] O. Venjakob, A note on determinant functors and spectral sequences, preprint, 2012, available at (accessed 23 January 2015).