Journal of Mathematics of Kyoto University

Borcherds products for higher level modular forms

Yusuke Kawai

Full-text: Open access

Abstract

We generalize Borcherds’ construction of infinite products to higher level vector valued modular forms of Nebentypus. Then we obtain meromorphic modular functions for the orthogonal group whose zeros or poles lie on the Heegner divisors. The construction involves twisted Siegel theta functions and the singular theta integral.

Article information

Source
J. Math. Kyoto Univ., Volume 46, Number 2 (2006), 415-438.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250281785

Digital Object Identifier
doi:10.1215/kjm/1250281785

Mathematical Reviews number (MathSciNet)
MR2284352

Zentralblatt MATH identifier
1221.11110

Subjects
Primary: 11F30: Fourier coefficients of automorphic forms
Secondary: 11F32: Modular correspondences, etc. 11F37: Forms of half-integer weight; nonholomorphic modular forms 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Citation

Kawai, Yusuke. Borcherds products for higher level modular forms. J. Math. Kyoto Univ. 46 (2006), no. 2, 415--438. doi:10.1215/kjm/1250281785. https://projecteuclid.org/euclid.kjm/1250281785


Export citation